Exercise Resistance

Exercise here can be loaded by html files

current

Exercise - Current from charge

if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(1, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(1, 20, 0); //defined in setup_exercise_all.js }
return (true);
[[ namespace_resistance.i = ~q~/~t~; return ""; ]] A wire has $~q~ C$ of charge flowing through it in $~t~s$. Find the current $I$.
Hint: $I = \frac{dq}{dt} = \frac{\Delta q}{\Delta t}$ for constant current.

Solution

$$ \begin{eqnarray} I = \frac{dq}{dt} &=& \frac{\Delta q}{\Delta t} \\ &=& \frac{~q~ C}{~t~ s} \\ &=& [[return sf_latex(namespace_resistance.i)]] C/s \\ &=& [[return sf_latex(namespace_resistance.i)]] A \end{eqnarray} $$
$I = $
return sf_math(namespace_resistance.i)
5%
Select unit for current:
$J$
$C$
$C/m$
$A$
3
current || drift_velocity

Exercise - Drift velocity in metal

if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(0, 4, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.4; } else { return random_min_max_precision(0.1, 2, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 18; } else { return random_min_max_precision(5, 500, 0); //defined in setup_exercise_all.js }
return (true);
A [[return namespace_resistance.array_metal_name[~index~] ]] wire ($n = [[return sf_latex(namespace_resistance.density)]] m^{-3}$) with radius $r = ~radius~ mm$ carries a current of $~current~ mA$. Find:
  1. The current density.
  2. The magnitude of the drift velocity.
Use $e = 1.6\times 10^{-19}C$. Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint: $$ \begin{eqnarray} j &=& \frac{I}{A} = n q v_d \\ I &=& n q v_d A \end{eqnarray} $$
namespace_resistance.array_metal_name = ["aluminum", "copper", "iron", "gold", "silver"]; namespace_resistance.array_metal_density = [6e28, 8.5e28, 8.3e28, 5.9e28, 5.6e28]; namespace_resistance.density = namespace_resistance.array_metal_density[~index~]; namespace_resistance.area = Math.PI * ~radius~ * ~radius~ * 1e-6; namespace_resistance.current_density = ~current~ * 1e-3 / namespace_resistance.area; namespace_resistance.drift_velocity = namespace_resistance.current_density / (namespace_resistance.density * 1.6e-19);

Solution

Current density: $$ \begin{eqnarray} j &=& \frac{I}{A} \\ &=& \frac{I}{\pi r^2} \\ &=& \frac{~current~ \times 10^{-3}A}{\pi (~radius~ \times 10^{-3})^2} \\ &=& [[return sf_latex(namespace_resistance.current_density)]] A/m^2 \end{eqnarray} $$

Drift velocity: $$ \begin{eqnarray} I &=& n q v_d A \\ \Rightarrow j &=& \frac{I}{A} = n q v_d \\ \Rightarrow v_d &=& \frac{j}{n q} \\ \Rightarrow |v_d| &=& \frac{j}{n |q|} &\text{ (looking for magnitude only)} \\ &=& \frac{j}{n e} &\text{ (charge carriers in a metal are electrons, with $q = -e$)} \\ &=& \frac{[[return sf_latex(namespace_resistance.current_density)]] A/m^2}{([[return sf_latex(namespace_resistance.density)]] m^{-3}) (1.6\times 10^{-19}C)} \\ &=& [[return sf_latex(namespace_resistance.drift_velocity)]] m/s \end{eqnarray} $$

$j= $
return sf_math(namespace_resistance.current_density)
5%

$|v_d|= $
return sf_math(namespace_resistance.drift_velocity)
5%
$m/s$
Select unit for current density:
$A$
$m^{-3}$
$A/m$
$A/m^2$
3
current || resistance

Exercise - Ohm's law basics

if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(1, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 20, 0); //defined in setup_exercise_all.js }
return (~i_1~ != ~i_2~);
[[ namespace_resistance.r = ~v_1~ / ~i_1~; namespace_resistance.v_2 = namespace_resistance.r * ~i_2~; return ""; ]] When a battery with a potential difference of $V_1 = ~v_1~ V$ is applied across a resistor, a current $I_1 = ~i_1~ A$ flows through.
  1. Find the resistance $R$.
  2. If the current is changed to $I_2 = ~i_2~ A$, what would be the potential difference $V_2$ across the resistor?
Hint:
  • $V=IR$.
  • $R$ stays the same even when $V$ and $I$ changes.

Solution

Find $R$
$$ \begin{eqnarray} R &=& \frac{V_1}{I_1} \\ &=& \frac{~v_1~ V}{~i_1~ A} \\ &=& [[return sf_latex(namespace_resistance.r)]] \Omega \end{eqnarray} $$
Find $V_2$
$R$ stays the same, so we have: $$ \begin{eqnarray} V_2 &=& I_2 R \\ &=& (~i_2~ A)([[return sf_latex(namespace_resistance.r)]] \Omega) \\ &=& [[return sf_latex(namespace_resistance.v_2)]] V \end{eqnarray} $$
$R = $
return sf_math(namespace_resistance.r)
5%

$V_2 = $
return sf_math(namespace_resistance.v_2)
5%
$V$
Select unit for resistance:
$A$
$V$
$F$
$\Omega$
3
current || resistance

Exercise - Resistance from resistivity

if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(0, 4, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.4; } else { return random_min_max_precision(0.1, 2, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 400; } else { return random_min_max_precision(10, 500, -1); //defined in setup_exercise_all.js }
return (true);
Find the resistance of a $~l~ cm$ long [[return namespace_resistance.array_metal_name[~index~] ]] wire ($\rho = [[return sf_latex(namespace_resistance.resistivity)]] \Omega m$) with radius $r = ~radius~ mm$.

Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint: $$ R = \rho \frac{l}{A} $$
namespace_resistance.array_metal_name = ["silver", "copper", "gold", "aluminum", "iron", "lead"]; namespace_resistance.array_metal_resistivity = [1.59e-8, 1.7e-8, 2.44e-8, 2.82e-8, 10e-8, 22e-8]; namespace_resistance.resistivity = namespace_resistance.array_metal_resistivity[~index~]; namespace_resistance.area = Math.PI * ~radius~ * ~radius~ * 1e-6; namespace_resistance.resistance = namespace_resistance.resistivity * ~l~ * 1e-2 / namespace_resistance.area;

Solution

$$ \begin{eqnarray} R &=& \rho \frac{l}{A} \\ &=& \rho \frac{l}{\pi r^2} \\ &=& ([[return sf_latex(namespace_resistance.resistivity)]] \Omega m) \frac{~l~ \times 0.01m}{\pi (~radius~ \times 10^{-3}m)^2} \\ &=& [[return sf_latex(namespace_resistance.resistance)]] \Omega \end{eqnarray} $$
$R= $
return sf_math(namespace_resistance.resistance)
5%
$\Omega$
current || resistance || power

Exercise - Power from current

if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(0.5, 2.0, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(10, 50, 0); //defined in setup_exercise_all.js }
return (true);
A current of $~i~ A$ passes through a resistor of $~r~ \Omega$.
  1. Find the potential difference across the resistor.
  2. Find the power dissipated.
Hint: $$ \begin{eqnarray} V &=& IR \\ P &=& IV =I^2 R \end{eqnarray} $$
namespace_resistance.v = ~i~ * ~r~; namespace_resistance.p = ~i~ * ~i~ * ~r~;

Solution

Potential difference
$$ \begin{eqnarray} V &=& I R \\ &=& (~i~ A)(~r~ \Omega) \\ &=& [[return sf_latex(namespace_resistance.v)]] V \end{eqnarray} $$
Power
$$ \begin{eqnarray} P &=& I^2 R \\ &=& (~i~ A)^2(~r~ \Omega) \\ &=& [[return sf_latex(namespace_resistance.p)]] W \end{eqnarray} $$

$P = [[return sf_latex(namespace_resistance.p)]] W = [[return sf_latex(namespace_resistance.p)]] J/s$. It means that $[[return sf_latex(namespace_resistance.p)]] J$ is being released by the resistor every second.

Alternatively: $$ \begin{eqnarray} P &=& I V \\ &=& (~i~ A)([[return sf_latex(namespace_resistance.v)]] V) \\ &=& [[return sf_latex(namespace_resistance.p)]] W \end{eqnarray} $$
$V = $
return sf_math(namespace_resistance.v)
5%

$P = $
return sf_math(namespace_resistance.p)
5%
Select unit for potential difference:
$C$
$V$
$J$
$W$
1
Select unit for power:
$C$
$V$
$J$
$W$
3
current || resistance

Exercise - Eqivalent resistance of two resistors

Resistors in series and in parallel.
Find the equivlent resistance.
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint:
  • $R_{series} = R_1 + R_2$: resistors in series.
  • $R_{parallel} = (R_1^{-1} + R_2^{-1})^{-1}$: resistors in parallel

Solution

$$ R_{series} = R_1 + R_2 = [[return ~~R_1]] + [[return ~~R_2]] = [[return ~~R_1 + ~~R_2]] \Omega. $$ $$ R_{parallel} = (R_1^{-1} + R_2^{-1})^{-1} = ([[return ~~R_1]]^{-1} + [[return ~~R_2]]^{-1})^{-1} = [[return (1/(1/~~R_1 + 1/~~R_2)).toFixed(2)]] \Omega. $$
$R_{series} = $
return ~~R_1 + ~~R_2
0.2
$R_{parallel} = $
return (1/(1/~~R_1 + 1/~~R_2)).toFixed(2)
0.2
Select unit:
$\Omega$
$A$
$V$
$mA$
0
current || resistance

Exercise - Eqivalent resistance of three resistors

Resistors in series and in parallel.
Find the equivlent resistance.
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint:
  • $R_{series} = R_1 + R_2 + R_3$: resistors in series.
  • $R_{parallel} = (R_1^{-1} + R_2^{-1} + R_3^{-1})^{-1}$: resistors in parallel

Solution

$$ R_{series} = R_1 + R_2 + R_3 = [[return ~~R_1]] + [[return ~~R_2]] + [[return ~~R_3]] = [[return ~~R_1 + ~~R_2 + ~~R_3]] \Omega. $$ $$ R_{parallel} = (R_1^{-1} + R_2^{-1} + R_3^{-1})^{-1} = ([[return ~~R_1]]^{-1} + [[return ~~R_2]]^{-1} + [[return ~~R_3]]^{-1})^{-1} = [[return (1/(1/~~R_1 + 1/~~R_2 + 1/~~R_3)).toFixed(2)]] \Omega. $$
$R_{series} = $
return ~~R_1 + ~~R_2 + ~~R_3
0.2
$R_{parallel} = $
return (1/(1/~~R_1 + 1/~~R_2 + 1/~~R_3)).toFixed(2)
0.2
Select unit:
$\Omega$
$A$
$V$
$mA$
0
current || resistance

Exercise - Eqivalent resistance of four resistors 1

Resistors with both parallel and series connections.
Find the equivlent resistance.
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint:
  1. First find $R_{23} = (R_2^{-1} + R_3^{-1})^{-1}$.
  2. Then calculate $R_{1234} = R_1 + R_{23} + R_4$.

Solution

Reducing $R_2$ and $R_3$ into $R_{23}$.
[[ namespace_resistance.R_23 = 1/(1/~~R_2 + 1/~~R_3); namespace_resistance.R_1234 = ~~R_1 + ~~R_4 + namespace_resistance.R_23; return ""; ]] $$ R_{23} = (R_2^{-1} + R_3^{-1})^{-1} = ([[return ~~R_2]]^{-1} + [[return ~~R_3]]^{-1})^{-1} = [[return (namespace_resistance.R_23).toFixed(2)]] \Omega. $$ $$ R_{1234} = R_1 + R_{23} + R_4 = [[return ~~R_1]] + [[return (namespace_resistance.R_23).toFixed(2)]] + [[return ~~R_4]] = [[return (namespace_resistance.R_1234).toFixed(2)]] \Omega. $$
$R_{1234} = $
return (namespace_resistance.R_1234).toFixed(2)
0.2
Select unit:
$\Omega$
$A$
$V$
$mA$
0
current || resistance

Exercise - Eqivalent resistance of four resistors 2

Resistors with both parallel and series connections.
Find the equivlent resistance.
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint:
  1. First find $R_{34} = R_3 + R_4$.
  2. First find $R_{234} = (R_2^{-1} + R_{34}^{-1})^{-1}$.
  3. Then calculate $R_{1234} = R_1 + R_{234}$.

Solution

Reducing $R_2$, $R_3$ and $R_4$ into $R_{234}$.
[[ namespace_resistance.R_34 = ~~R_3 + ~~R_4; namespace_resistance.R_234 = 1/(1/~~R_2 + 1/namespace_resistance.R_34); namespace_resistance.R_1234 = ~~R_1 + namespace_resistance.R_234; return ""; ]] $$ R_{34} = R_3 + R_4 = [[return ~~R_3]] + [[return ~~R_4]] = [[return (namespace_resistance.R_34).toFixed(2)]] \Omega. $$ $$ R_{234} = (R_2^{-1} + R_{34}^{-1})^{-1} = ([[return ~~R_2]]^{-1} + [[return (namespace_resistance.R_34).toFixed(2)]]^{-1})^{-1} = [[return (namespace_resistance.R_234).toFixed(2)]] \Omega. $$ $$ R_{1234} = R_1 + R_{234} = [[return ~~R_1]] + [[return (namespace_resistance.R_234).toFixed(2)]] = [[return (namespace_resistance.R_1234).toFixed(2)]] \Omega. $$
$R_{1234} = $
return (namespace_resistance.R_1234).toFixed(2)
0.2
Select unit:
$\Omega$
$A$
$V$
$mA$
0
current || resistance

Exercise - Internal resistance

if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(1, 15, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.5; } else { return random_min_max_precision(0.1, 5, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 7, 1, true); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 95; } else { return random_min_max_precision(80, 99, 0, false); //defined in setup_exercise_all.js }
return (~emf~ - ~i~ * ~r~ > 0);
A battery with emf $~emf~ V$ and internal resistance $~r~ \Omega$ has a $~i~ A$ current passing through it.
  1. What is the apparent voltage output?
  2. What is the current if we want the voltage output to be $~v_percentage~ \%$ of the emf?
Hint: $$ V_{apparent} = \mathcal{E} - Ir $$
namespace_resistance.v_apparent = ~emf~ - ~i~ * ~r~; namespace_resistance.current_required = (100 - ~v_percentage~)/100 * ~emf~/ ~r~;

Solution

$$ \begin{eqnarray} V_{apparent} &=& \mathcal{E} - Ir \\ &=& ~emf~ V - (~i~ A)(~r~ \Omega) \\ &=& [[return sf_latex(namespace_resistance.v_apparent)]] V \end{eqnarray} $$
For $V_{apparent} = [[return ~v_percentage~/100]] \mathcal{E} = [[return sf_latex(~v_percentage~/100 * ~emf~)]] V$, we simply solve for $I$: $$ \begin{eqnarray} V_{apparent} &=& \mathcal{E} - Ir \\ \Rightarrow [[return ~v_percentage~/100]] \mathcal{E} &=& \mathcal{E} - Ir \\ \Rightarrow Ir &=& (1 - [[return ~v_percentage~/100]]) \mathcal{E} \\ \Rightarrow I &=& \frac{[[return (100 - ~v_percentage~)/100]] \mathcal{E}}{r} \\ &=& \frac{([[return (100 - ~v_percentage~)/100]]) (~emf~ V)}{~r~ \Omega} \\ &=& [[return sf_latex(namespace_resistance.current_required)]] A \end{eqnarray} $$
$V_{apparent}= $
return sf_math(namespace_resistance.v_apparent)
5%
$V$
$I= $
return sf_math(namespace_resistance.current_required)
5%
$A$
current

Exercise - Kirchhoff's junction rule

if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(-10, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return -3; } else { return random_min_max_precision(-10, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1; } else { return ((Math.random()>0.5)? -1: +1); }
return (true);
Find the current $I_3$.
Find the current $I_3$ according to the currents in the figure. Be careful with the signs.
Hint:
namespace_resistance.i_3 = ~direction_of_arrow_i_3~ * (-1 * ~i_1~ - ~i_2~);

Solution

The actual directions of the currents.
$I_3= $
return sf_math(namespace_resistance.i_3)
5%
$A$
current

Exercise - Kirchhoff's loop rule

if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(-12, 12, 0, false, -0.1, 0.1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(-5, 5, 0, false, -0.1, 0.1); //defined in setup_exercise_all.js }
return (true);
A closed loop with battery, a resistor, and an unknown component.
The figure shows a closed circuit with a battery, a resistor, and an unknown component (which may contain many things, including its own power supply). Find the following potential change (beware of the signs):
  1. $\Delta V_{ba} = V_b - V_a$, i.e. the potential change when going from $a$ to $b$.
  2. $\Delta V_{cb} = V_c - V_b$, i.e. the potential change when going from $b$ to $c$.
  3. $\Delta V_{dc} = V_d - V_c$, i.e. the potential change when going from $c$ to $d$.
  4. $\Delta V_{da} = V_d - V_a$, i.e. the total potential change when going from $a$ to $d$.
Hint: $$ \sum_{loop} \Delta V = 0 $$
namespace_resistance.v_ba = ~emf~; namespace_resistance.v_cb = -1 * ~i~ * ~r~; namespace_resistance.v_dc = -namespace_resistance.v_ba - namespace_resistance.v_cb;

Solution

By Kirchhoff's loop rule, the total change in potential must be zero, therefore: $$ \begin{eqnarray} 0 &=& \sum_{loop} \Delta V \\ &=& \Delta V_{ba} + \Delta V_{cb} + \Delta V_{dc} \\ \Rightarrow \Delta V_{dc} &=& -\Delta V_{ba} - \Delta V_{cb} \\ &=& -([[return namespace_resistance.v_ba]] V) - ([[return namespace_resistance.v_cb]] V) \\ &=& [[return namespace_resistance.v_dc]] V \end{eqnarray} $$

By Kirchhoff's loop rule, going from $a$ to $d$ basically completes a whole loop, so the total change in potential must be zero: $$ \Delta V_{da} = 0V $$ One can also verify with our previous numbers that: $$ \Delta V_{da} = \Delta V_{dc} + \Delta V_{cb} + \Delta V_{ba} = 0V $$

$\Delta V_{ba}= $
return sf_math(namespace_resistance.v_ba)
5%
$V$
$\Delta V_{cb}= $
return sf_math(namespace_resistance.v_cb)
5%
$V$
$\Delta V_{dc}= $
return sf_math(namespace_resistance.v_dc)
5%
$V$
$\Delta V_{da}= $
return 0
5%
$V$
current || resistance

Exercise - A circuit with a single resistor

Circuit with a single resistor.
Find the current through the circuit given $R = ~~R_1 \Omega$ and the emf of the battery $V_0 = ~~V_0 V$.
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint: Apply Ohm's law $V=IR$ across the resistor. The voltage across the resistor is the same as battery.

Solution

Apply Ohm's law $V=IR$ across the resistor. The voltage across the resistor is the same as battery because it is the only component in connected with the battery. $$ I = \frac{V_0}{R} = \frac{[[return ~~V_0]] V}{[[return ~~R_1]] \Omega} = [[return (~~V_0/~~R_1).toFixed(1)]] A. $$
$I = $
return (~~V_0 / ~~R_1).toFixed(1)
0.2
Select unit:
$\Omega$
$A$
$V$
$mA$
1
current || resistance

Exercise - A circuit with two resistors in series

Circuit with two resistors in series.
Find the total resistance $R_{12}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint 1: Find the total resistance using $R_{12} = R_1 + R_2$.
Hint 2: Apply Ohm's law $V=IR$ across the total resistance. The voltage across the resistor is the same as battery.
[[ let nsp = namespace_resistance; nsp.R_12 = ~~R_1 + ~~R_2; nsp.I = ~~V_0/nsp.R_12; return ""; ]]

Solution

Final details.
For resistors in series, just add the resistance for the total resistance: $$ R_{12} = R_1 + R_2 = [[return ~~R_1]] + [[return ~~R_2]] = [[return (namespace_resistance.R_12).toFixed(1)]] \Omega $$ Apply Ohm's law $V=IR$ across the total resistance to get the total current. $$ I_{12} = \frac{V_0}{R_{12}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_12).toFixed(0)]]} = [[return (namespace_resistance.I).toFixed(2)]] A. $$ Since the resistors are connected in series, they must have the same current. Applying Ohm's law to each resistor, we get their voltages: $$ V_1 = I_1 R_1 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_1]]) = [[return (namespace_resistance.I * ~~R_1).toFixed(2)]] V $$ $$ V_2 = I_2 R_2 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_2]]) = [[return (namespace_resistance.I * ~~R_2).toFixed(2)]] V $$ Check: $V_{0} = V_1 + V_2$ as expected.
Total resistance $R_{12} = $
return (~~R_1 + ~~R_2).toFixed(0)
0.2
$\Omega$
Total current $I_{12} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{1} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{2} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$V_{1} = $
return (namespace_resistance.I * ~~R_1).toFixed(2)
0.2
$V$
$V_{2} = $
return (namespace_resistance.I * ~~R_2).toFixed(2)
0.2
$V$
current || resistance

Exercise - A circuit with three resistors in series

Circuit with three resistors in series.
Find the total resistance, and the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint 1: Find the total resistance using $R_{12} = R_1 + R_2 + R_3$.
Hint 2: Apply Ohm's law $V=IR$ across the total resistance. The voltage across the resistor is the same as battery.
[[ let nsp = namespace_resistance; nsp.R_123 = ~~R_1 + ~~R_2 + ~~R_3; nsp.I = ~~V_0/nsp.R_123; return ""; ]]

Solution

Final details.
For resistors in series, just add the resistance for the total resistance: $$ R_{123} = R_1 + R_2 + R_3 = [[return ~~R_1]] + [[return ~~R_2]] + [[return ~~R_3]] = [[return (namespace_resistance.R_123).toFixed(1)]] \Omega $$ Apply Ohm's law $V=IR$ across the total resistance to get the total current. $$ I_{123} = \frac{V_0}{R_{123}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_123).toFixed(0)]]} = [[return (namespace_resistance.I).toFixed(2)]] A. $$ Since the resistors are connected in series, they must have the same current, i.e. $I_1 = I_2 = I_3 = I_{123}$. Applying Ohm's law to each resistor, we get their voltages: $$ V_1 = I_1 R_1 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_1]]) = [[return (namespace_resistance.I * ~~R_1).toFixed(2)]] V $$ $$ V_2 = I_2 R_2 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_2]]) = [[return (namespace_resistance.I * ~~R_2).toFixed(2)]] V $$ $$ V_3 = I_3 R_3 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_3]]) = [[return (namespace_resistance.I * ~~R_3).toFixed(2)]] V $$ Check: $V_{0} = V_1 + V_2 + V_3$ as expected.
Total resistance $R_{123} = $
return (~~R_1 + ~~R_2 + ~~R_3).toFixed(0)
0.2
$\Omega$
Total current $I_{123} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{1} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{2} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{3} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$V_{1} = $
return (namespace_resistance.I * ~~R_1).toFixed(2)
0.2
$V$
$V_{2} = $
return (namespace_resistance.I * ~~R_2).toFixed(2)
0.2
$V$
$V_{3} = $
return (namespace_resistance.I * ~~R_3).toFixed(2)
0.2
$V$
current || resistance

Exercise - A circuit with two resistors in parallel

Circuit with two resistors in parallel.
Find the total resistance $R_{12}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint 1: Find the total resistance using $R_{12} = (R_1^{-1} + R_2^{-1})^{-1}$.
Hint 2: Each branch in the parallel component has the same voltage as the battery. Then apply Ohm's law to each resistor separately.
[[ let nsp = namespace_resistance; nsp.R_12 = 1/(1/~~R_1 + 1/~~R_2); nsp.I = ~~V_0/nsp.R_12; nsp.I_1 = ~~V_0/~~R_1; nsp.I_2 = ~~V_0/~~R_2; return ""; ]]

Solution

For resistors in parallel, the total resistance is found by: $$ R_{12} = (R_1^{-1} + R_2^{-1})^{-1} = (([[return ~~R_1]])^{-1} + ([[return ~~R_2]])^{-1})^{-1} = [[return (namespace_resistance.R_12).toFixed(2)]] \Omega $$ Each branch in parallel have the same voltage: $$ V_1 = V_0 = [[return (~~V_0).toFixed(0)]] V $$ $$ V_2 = V_0 = [[return (~~V_0).toFixed(0)]] V $$ Apply Ohm's law $V=IR$ across the total resistance to get the total current. $$ I_{12} = \frac{V_0}{R_{12}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_12).toFixed(2)]]} = [[return (namespace_resistance.I).toFixed(2)]] A. $$ Apply Ohm's law $V=IR$ on each branch: $$ I_1 = \frac{V_1}{R_1} = \frac{[[return ~~V_0]]}{[[return (~~R_1).toFixed(0)]]} = [[return (namespace_resistance.I_1).toFixed(2)]] A. $$ $$ I_2 = \frac{V_2}{R_2} = \frac{[[return ~~V_0]]}{[[return (~~R_2).toFixed(0)]]} = [[return (namespace_resistance.I_2).toFixed(2)]] A. $$ Check: $I_{12} = I_1 + I_2$ as expected, currents from both branches merge to form the total current.
Total resistance $R_{12} = $
return (namespace_resistance.R_12).toFixed(2)
0.2
$\Omega$
Total current $I_{12} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{1} = $
return (namespace_resistance.I_1).toFixed(2)
0.2
$A$
$I_{2} = $
return (namespace_resistance.I_2).toFixed(2)
0.2
$A$
$V_{1} = $
return (~~V_0).toFixed(0)
0.2
$V$
$V_{2} = $
return (~~V_0).toFixed(0)
0.2
$V$
current || resistance

Exercise - A circuit with three parallel branches

Circuit with three parallel branches.
Find the total resistance $R_{1234}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint:
  • Find the resistance of the branch $R_{34} = R_3+R_4$, then find the total resistance using $R_{1234} = (R_1^{-1} + R_2^{-1} + R_{34}^{-1})^{-1}$.
  • Each branch in the parallel component has the same voltage as the battery. Then apply Ohm's law to each resistor separately.
[[ let nsp = namespace_resistance; nsp.R_34 = ~~R_3 + ~~R_4; nsp.R_1234 = 1/(1/~~R_1 + 1/~~R_2 + 1/nsp.R_34); nsp.I = ~~V_0/nsp.R_1234; nsp.I_1 = ~~V_0/~~R_1; nsp.I_2 = ~~V_0/~~R_2; nsp.I_34 = ~~V_0/nsp.R_34; nsp.V_3 = nsp.I_34 * ~~R_3; nsp.V_4 = nsp.I_34 * ~~R_4; return ""; ]]

Solution

Final details.
For resistors in parallel, the total resistance is found by: $$ R_{34} = R_3 + R_4 = [[return ~~R_3]] + [[return ~~R_4]] = [[return (namespace_resistance.R_34).toFixed(0)]] \Omega $$ $$ R_{1234} = (R_1^{-1} + R_2^{-1} + R_{34}^{-1})^{-1} = ([[return ~~R_1]]^{-1} + [[return ~~R_2]]^{-1} + [[return namespace_resistance.R_34]]^{-1} )^{-1} = [[return (namespace_resistance.R_1234).toFixed(2)]] \Omega $$ Each branch in parallel have the same voltage: $$ V_1 = V_0 = [[return (~~V_0).toFixed(0)]] V $$ $$ V_2 = V_0 = [[return (~~V_0).toFixed(0)]] V $$ For the last branch, the total voltage across the entire branch is: $$ V_{34} = V_0 = [[return (~~V_0).toFixed(0)]] V $$ However, $V_3 \neq V_4 \neq V_{34}$, we will work out $V_3$ and $V_4$ after we get the currents $I_3$ and $I_4$ later.

Apply Ohm's law $V=IR$ across the total resistance to get the total current. $$ I_{1234} = \frac{V_0}{R_{1234}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_1234).toFixed(2)]]} = [[return (namespace_resistance.I).toFixed(2)]] A. $$ Apply Ohm's law $V=IR$ on each branch: $$ I_1 = \frac{V_1}{R_1} = \frac{[[return ~~V_0]]}{[[return (~~R_1).toFixed(0)]]} = [[return (namespace_resistance.I_1).toFixed(2)]] A. $$ $$ I_2 = \frac{V_2}{R_2} = \frac{[[return ~~V_0]]}{[[return (~~R_2).toFixed(0)]]} = [[return (namespace_resistance.I_2).toFixed(2)]] A. $$ For the last branch: $$ I_{34} = \frac{V_3}{R_{34}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_34).toFixed(0)]]} = [[return (namespace_resistance.I_34).toFixed(2)]] A. $$ Since $R_3$ and $R_4$ are on the same branch and in series, they must have the same current: $$ I_3 = I_4 = I_{34} = [[return (namespace_resistance.I_34).toFixed(2)]] A. $$ The current now allows us to work out the voltages $V_3$ and $V_4$: $$ V_3 = I_3 R_3 = ([[return (namespace_resistance.I_34).toFixed(2)]])(~~R_3) = [[return (namespace_resistance.V_3).toFixed(2)]] V. $$ $$ V_4 = I_4 R_4 = ([[return (namespace_resistance.I_34).toFixed(2)]])(~~R_4) = [[return (namespace_resistance.V_4).toFixed(2)]] V. $$ Check: $I_{1234} = I_1 + I_2 + I_{34}$ as expected, currents from all three branches merge to form the total current.
Total resistance $R_{1234} = $
return (namespace_resistance.R_1234).toFixed(2)
0.2
$\Omega$
Total current $I_{1234} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{1} = $
return (namespace_resistance.I_1).toFixed(2)
0.2
$A$
$I_{2} = $
return (namespace_resistance.I_2).toFixed(2)
0.2
$A$
$I_{3} = $
return (namespace_resistance.I_34).toFixed(2)
0.2
$A$
$I_{4} = $
return (namespace_resistance.I_34).toFixed(2)
0.2
$A$
$V_{1} = $
return (~~V_0).toFixed(0)
0.2
$V$
$V_{2} = $
return (~~V_0).toFixed(0)
0.2
$V$
$V_{3} = $
return (namespace_resistance.V_3).toFixed(2)
0.2
$V$
$V_{4} = $
return (namespace_resistance.V_4).toFixed(2)
0.2
$V$
current || resistance

Exercise - A circuit with resistors in combination with one parallel block

Circuit with resistors in combination.
Find the total resistance $R_{1234}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint:
  1. Find the resistance of the branch $R_{34} = R_3+R_4$.
  2. Then calculate $R_{234} = (R_2^{-1} + R_{34}^{-1})^{-1}$.
  3. Next find the total resistance using $R_{1234} = R_1 + R_{234}$.
[[ let nsp = namespace_resistance; nsp.R_34 = ~~R_3 + ~~R_4; nsp.R_234 = 1/( 1/~~R_2 + 1/nsp.R_34); nsp.R_1234 = ~~R_1 + nsp.R_234; nsp.I = ~~V_0/nsp.R_1234; nsp.I_1 = nsp.I; nsp.V_1 = nsp.I_1 * ~~R_1; nsp.I_234 = nsp.I; nsp.V_234 = nsp.I_234 * nsp.R_234; nsp.V_2 = nsp.V_234; nsp.V_34 = nsp.V_234; nsp.I_2 = nsp.V_2 / ~~R_2; nsp.I_34 = nsp.V_34/nsp.R_34; nsp.I_3 = nsp.I_34; nsp.I_4 = nsp.I_34; nsp.V_3 = nsp.I_34 * ~~R_3; nsp.V_4 = nsp.I_34 * ~~R_4; return ""; ]]

Solution

Merging the resistance.
For resistors in parallel, the total resistance is found by: $$ R_{34} = R_3 + R_4 = [[return ~~R_3]] + [[return ~~R_4]] = [[return (namespace_resistance.R_34).toFixed(0)]] \Omega $$ $$ R_{234} = (R_2^{-1} + R_{34}^{-1})^{-1} = ([[return ~~R_2]]^{-1} + [[return (namespace_resistance.R_34).toFixed(0)]]^{-1})^{-1} = [[return (namespace_resistance.R_234).toFixed(2)]] \Omega $$ $$ R_{1234} = R_1+ R_{234} = [[return ~~R_1]] + [[return(namespace_resistance.R_234).toFixed(2)]] = [[return (namespace_resistance.R_1234).toFixed(2)]] \Omega $$
Undoing the merge.
Apply Ohm's law $V=IR$ across the total resistance to get the total current. $$ I_{1234} = \frac{V_0}{R_{1234}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_1234).toFixed(2)]]} = [[return (namespace_resistance.I).toFixed(2)]] A. $$ This gives the currents: $$ I_1 = I_{234} = I_{1234} = [[return (namespace_resistance.I).toFixed(2)]] A. $$ The voltage across $R_1$ can also be found: $$ V_1 = I_1 R_1 = ([[return (namespace_resistance.I_1).toFixed(2)]])(~~R_1) = [[return (namespace_resistance.V_1).toFixed(2)]] V. $$
$$ V_{234} = I_{234} R_{234} = ([[return (namespace_resistance.I_234).toFixed(2)]])([[return (namespace_resistance.R_234).toFixed(2)]]) = [[return (namespace_resistance.V_234).toFixed(2)]] V. $$ Each branch in parallel have the same voltage: $$ V_2 = V_{234} = [[return (namespace_resistance.V_234).toFixed(2)]] V $$ $$ V_{34} = V_{234} = [[return (namespace_resistance.V_234).toFixed(2)]] V $$
$$ I_2 = \frac{V_2}{R_2} = \frac{[[return (namespace_resistance.V_2).toFixed(2)]]}{[[return (~~R_2).toFixed(0)]]} = [[return (namespace_resistance.I_2).toFixed(2)]] A. $$ For the last branch: $$ I_{34} = \frac{V_3}{R_{34}} = \frac{[[return (namespace_resistance.V_34).toFixed(2)]]}{[[return (namespace_resistance.R_34).toFixed(0)]]} = [[return (namespace_resistance.I_34).toFixed(2)]] A. $$ Since $R_3$ and $R_4$ are on the same branch and in series, they must have the same current: $$ I_3 = I_4 = I_{34} = [[return (namespace_resistance.I_34).toFixed(2)]] A. $$ The current now allows us to work out the voltages $V_3$ and $V_4$: $$ V_3 = I_3 R_3 = ([[return (namespace_resistance.I_34).toFixed(2)]])(~~R_3) = [[return (namespace_resistance.V_3).toFixed(2)]] V. $$ $$ V_4 = I_4 R_4 = ([[return (namespace_resistance.I_34).toFixed(2)]])(~~R_4) = [[return (namespace_resistance.V_4).toFixed(2)]] V. $$
Final details.
Check: $I_{1234} = I_1 = I_2 + I_{34}$ as expected, currents from all three branches merge to form the total current.
Total resistance $R_{1234} = $
return (namespace_resistance.R_1234).toFixed(2)
0.2
$\Omega$
Total current $I_{1234} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{1} = $
return (namespace_resistance.I_1).toFixed(2)
0.2
$A$
$I_{2} = $
return (namespace_resistance.I_2).toFixed(2)
0.2
$A$
$I_{3} = $
return (namespace_resistance.I_3).toFixed(2)
0.2
$A$
$I_{4} = $
return (namespace_resistance.I_3).toFixed(2)
0.2
$A$
$V_{1} = $
return (namespace_resistance.V_1).toFixed(2)
0.2
$V$
$V_{2} = $
return (namespace_resistance.V_2).toFixed(2)
0.2
$V$
$V_{3} = $
return (namespace_resistance.V_3).toFixed(2)
0.2
$V$
$V_{4} = $
return (namespace_resistance.V_4).toFixed(2)
0.2
$V$
current || resistance

Exercise - A circuit with resistors in combination with two parallel blocks

Circuit with resistors in combination.
Find the total resistance $R_{1234}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
Hint:
  1. Find the resistance $R_{12} = (R_1^{-1}+R_2^{-1})^{-1}$ and $R_{34} = (R_3^{-1}+R_4^{-1})^{-1}$.
  2. Then calculate $R_{1234} = R_{12} + R_{34}$.
[[ let nsp = namespace_resistance; nsp.R_12 = 1/(1/~~R_1 + 1/~~R_2); nsp.R_34 = 1/(1/~~R_3 + 1/~~R_4); nsp.R_1234 = nsp.R_12 + nsp.R_34; nsp.I = ~~V_0/nsp.R_1234; nsp.I_12 = nsp.I; nsp.I_34 = nsp.I; nsp.V_12 = nsp.I_12 * nsp.R_12; nsp.V_34 = nsp.I_34 * nsp.R_34; nsp.V_1 = nsp.V_12; nsp.V_2 = nsp.V_12; nsp.V_3 = nsp.V_34; nsp.V_4 = nsp.V_34; nsp.I_1 = nsp.V_1 / ~~R_1; nsp.I_2 = nsp.V_2 / ~~R_2; nsp.I_3 = nsp.V_3 / ~~R_3; nsp.I_4 = nsp.V_4 / ~~R_4; return ""; ]]

Solution

Merging the resistance.
For resistors in parallel, the total resistance is found by: $$ R_{12} = (R_1^{-1} + R_2^{-1})^{-1} = ([[return ~~R_1]]^{-1} + [[return ~~R_2]]^{-1})^{-1} = [[return (namespace_resistance.R_12).toFixed(2)]] \Omega $$ $$ R_{34} = (R_3^{-1} + R_4^{-1})^{-1} = ([[return ~~R_3]]^{-1} + [[return ~~R_4]]^{-1})^{-1} = [[return (namespace_resistance.R_34).toFixed(2)]] \Omega $$ $R_{12}$ and $R_{34}$ are in series: $$ R_{1234} = R_{12}+ R_{34} = [[return (namespace_resistance.R_12).toFixed(2)]] + [[return(namespace_resistance.R_34).toFixed(2)]] = [[return (namespace_resistance.R_1234).toFixed(2)]] \Omega $$
Undoing the merge.
Apply Ohm's law $V=IR$ across the total resistance to get the total current. $$ I_{1234} = \frac{V_0}{R_{1234}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_1234).toFixed(2)]]} = [[return (namespace_resistance.I).toFixed(2)]] A. $$ This gives the currents: $$ I_{12} = I_{34} = I_{1234} = [[return (namespace_resistance.I).toFixed(2)]] A. $$ This gives: $$ V_{12} = I_{12} R_{12} = ([[return (namespace_resistance.I_12).toFixed(2)]])([[return (namespace_resistance.R_12).toFixed(2)]]) = [[return (namespace_resistance.V_12).toFixed(2)]] V. $$ $$ V_{34} = I_{34} R_{34} = ([[return (namespace_resistance.I_34).toFixed(2)]])([[return (namespace_resistance.R_34).toFixed(2)]]) = [[return (namespace_resistance.V_34).toFixed(2)]] V. $$
Each branch has the same voltage: $$ V_1 = V_2 = V_{12} = [[return (namespace_resistance.V_12).toFixed(2)]] V $$ $$ V_3 = V_4 = V_{34} = [[return (namespace_resistance.V_34).toFixed(2)]] V $$
Applying Ohm's law to each resistor: $$ I_1 = \frac{V_1}{R_1} = \frac{[[return (namespace_resistance.V_1).toFixed(2)]]}{[[return (~~R_1).toFixed(0)]]} = [[return (namespace_resistance.I_1).toFixed(2)]] A. $$ $$ I_2 = \frac{V_2}{R_2} = \frac{[[return (namespace_resistance.V_2).toFixed(2)]]}{[[return (~~R_2).toFixed(0)]]} = [[return (namespace_resistance.I_2).toFixed(2)]] A. $$ $$ I_3 = \frac{V_3}{R_3} = \frac{[[return (namespace_resistance.V_3).toFixed(2)]]}{[[return (~~R_3).toFixed(0)]]} = [[return (namespace_resistance.I_3).toFixed(2)]] A. $$ $$ I_4 = \frac{V_4}{R_4} = \frac{[[return (namespace_resistance.V_4).toFixed(2)]]}{[[return (~~R_4).toFixed(0)]]} = [[return (namespace_resistance.I_4).toFixed(2)]] A. $$
Final details.
Check: $I_{1234} = I_1 + I_2 = I_3 + I_4$ as expected.
Total resistance $R_{1234} = $
return (namespace_resistance.R_1234).toFixed(2)
0.2
$\Omega$
Total current $I_{1234} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$
$I_{1} = $
return (namespace_resistance.I_1).toFixed(2)
0.2
$A$
$I_{2} = $
return (namespace_resistance.I_2).toFixed(2)
0.2
$A$
$I_{3} = $
return (namespace_resistance.I_3).toFixed(2)
0.2
$A$
$I_{4} = $
return (namespace_resistance.I_4).toFixed(2)
0.2
$A$
$V_{1} = $
return (namespace_resistance.V_1).toFixed(2)
0.2
$V$
$V_{2} = $
return (namespace_resistance.V_2).toFixed(2)
0.2
$V$
$V_{3} = $
return (namespace_resistance.V_3).toFixed(2)
0.2
$V$
$V_{4} = $
return (namespace_resistance.V_4).toFixed(2)
0.2
$V$
current || resistance

Exercise - Irreducible circuit 2

if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 6, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(1, 6, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(1, 6, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 6, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 6, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 6, 0); //defined in setup_exercise_all.js }
return (true);
Circuit diagram.
Find the currents $I_1$, $I_2$ and $I_3$.
Hint:

Use Kirchhoff's loop rule and junction rule to set up three equations, then solve for the three unknowns.

namespace_resistance.i_3 = ((-1* ~v_1~ + ~v_3~ )* ~r_2~ - (~v_2~ - ~v_3~) * ~r_1~)/(~r_2~ *(~r_1~ + ~r_3~) + ~r_1~ * ~r_3~); namespace_resistance.i_2 = (~v_2~ - ~v_3~ + namespace_resistance.i_3 * ~r_3~)/~r_2~; namespace_resistance.i_1 = - namespace_resistance.i_2 - namespace_resistance.i_3;

Solution

Loop 1
Loop 1 on the left (blue), loop 2 on the right (red).

$$ \begin{eqnarray} 0 &=& -V_1 + V_3 - I_3 R_3 + I_1 R_1 \tag{1} \end{eqnarray} $$

Loop 2

$$ \begin{eqnarray} 0 &=& V_2 - I_2 R_2 + I_3 R_3 - V_3 \\ &=& V_2 - V_3 - I_2 R_2 + I_3 R_3 \tag{2} \end{eqnarray} $$

Junction rule at $a$

By conservation of current, we have: $$ I_1 + I_2 + I_3 = 0 \tag{3} $$ Together we have three equations for the three unknows ($I_1$, $I_2$ and $I_3$). Solve them any way you like. I will demonstrate one possible approach below.

From eqn(3), we get $I_1 = - I_2 - I_3$. Put into eqn(1): $$ \begin{eqnarray} 0 &=& -V_1 + V_3 - I_3 R_3 + (- I_2 - I_3) R_1 \\ &=& -V_1 + V_3 - I_2 R_1 -I_3 (R_1+R_3) \end{eqnarray} $$ This gives us: $$ \begin{eqnarray} \left\{ % comment a closing brace to remove the error warning } \begin{array}{rll} 0 &= -V_1 + V_3 - I_2 R_1 -I_3 (R_1+R_3) &\text{(1')} \\ 0 &= V_2 - V_3 - I_2 R_2 + I_3 R_3 &\text{(2)} \end{array} \right. \end{eqnarray} $$

Multiply eqn(1') by $R_2$ and eqn(2) by $R_1$: $$ \begin{eqnarray} \left\{ % comment a closing brace to remove the error warning } \begin{array}{rll} 0 &= (-V_1 + V_3)R_2 - I_2 R_1 R_2 -I_3 R_2 (R_1+R_3) & \text{(1'')} \\ 0 &= (V_2 - V_3)R_1 - I_2 R_1 R_2 + I_3 R_1 R_3 & \text{(2')} \end{array} \right. \end{eqnarray} $$

Subtracting eqn(2') from eqn(1'') gives: $$ \begin{eqnarray} 0 &=& (-V_1 + V_3)R_2 - (V_2 - V_3)R_1 - I_3 R_2 (R_1+R_3) - I_3 R_1 R_3 \\ \Rightarrow I_3 (R_2 (R_1+R_3) + R_1 R_3) &=& (-V_1 + V_3)R_2 - (V_2 - V_3)R_1 \\ \Rightarrow I_3 &=& \frac{(-V_1 + V_3)R_2 - (V_2 - V_3)R_1}{R_2 (R_1+R_3) + R_1 R_3} \\ &=& [[return sf_latex(namespace_resistance.i_3)]] A \end{eqnarray} $$

Put $I_3$ back into eqn(2): $$ \begin{eqnarray} 0 &=& V_2 - V_3 - I_2 R_2 + I_3 R_3 \\ \Rightarrow I_2 R_2 &=& V_2 - V_3 + I_3 R_3 \\ \Rightarrow I_2 &=& \frac{V_2 - V_3 + I_3 R_3}{R_2} \\ &=& [[return sf_latex(namespace_resistance.i_2)]] A \end{eqnarray} $$

Finally, eqn(3) gives: $$ \begin{eqnarray} I_1 &=& -I_2 - I_3 \\ &=& [[return sf_latex(namespace_resistance.i_1)]] A \end{eqnarray} $$

Optional technique - matrix solution

Solving the above equations by hand is not difficult but quite tedious. If you know how to use matrices on a calculator, you could also use the method below.

$$ \begin{eqnarray} 0 &=& -V_1 + V_3 - I_3 R_3 + I_1 R_1 \tag{1} \end{eqnarray} $$ $$ \begin{eqnarray} 0 &=& V_2 - I_2 R_2 + I_3 R_3 - V_3 \\ &=& V_2 - V_3 - I_2 R_2 + I_3 R_3 \tag{2} \end{eqnarray} $$

The three equations (1), (2) and (3) above can be written as: $$ \begin{eqnarray} \left\{ % comment a closing brace to remove the error warning } \begin{array}{rl} R_1 I_1 + 0 I_2 - R_3 I_3 &= V_1 - V_3 \\ 0 I_1 - R_2 I_2 + R_3 I_3 &= -V_2 + V_3 \\ I_1 + I_2 + I_3 &= 0 \end{array} \right. \end{eqnarray} $$ These equations can be written as: $$ \left(\begin{array}{ccc}R_1 & 0 & -R_3 \\0 & -R_2 & R_3 \\1 & 1 & 1\end{array}\right) \left(\begin{array}{c}I_1 \\I_2 \\I_3\end{array}\right) = \left(\begin{array}{c}V_1 - V_3 \\-V_2 + V_3 \\0\end{array}\right) $$

Calling the matrices and vectors above ${\cal R}, {\cal I}$, and ${\cal V}$, we can write the equation as: $$ \begin{eqnarray} {\cal R} {\cal I} &=& {\cal V} \\ \Rightarrow {\cal I} &=& {\cal R}^{-1} {\cal V} \end{eqnarray} $$ Use your calculator to find the inverse matrix ${\cal R}^{-1}$ and multiply to ${\cal V}$ then gives: $$ \begin{eqnarray} \Rightarrow {\cal I} = \left(\begin{array}{c}I_1 \\I_2 \\I_3\end{array}\right) &=& \left(\begin{array}{c}[[return sf_latex(namespace_resistance.i_1)]] A \\[[return sf_latex(namespace_resistance.i_2)]] A \\[[return sf_latex(namespace_resistance.i_3)]] A \end{array}\right) \\ \end{eqnarray} $$

$I_1= $
return sf_math(namespace_resistance.i_1)
5%
$A$
$I_2= $
return sf_math(namespace_resistance.i_2)
5%
$A$
$I_3= $
return sf_math(namespace_resistance.i_3)
5%
$A$
current || resistance

Exercise - Irreducible circuit 1

if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 20; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 30; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
return (true);
Circuit diagram.
Find all the currents.
i_3 = - ~v_2~ / ~r_3~; i_1 = (~v_1~ - ~v_2~) / ~r_1~; i_2 = -i_1 - i_3;
Hint: Apply Kirchhoff's loop rule twice and the juction rule once to get three equations, then solve for the three unknowns.

Solution

Circuit diagram.
Loop 1
Applying Kirchhoff's loop rule to the loop on the left, starting from the left of the battery: $$ \begin{eqnarray} 0 &=& \sum \Delta V \\ &=& -V_1 - I_3 R_3 + I_1 R_1 \\ &=& - ~v_1~ - ~r_3~ I_3 + ~r_1~ I_1 \\ &=& ~r_1~ I_1 - ~r_3~ I_3 - ~v_1~ \tag{1} \end{eqnarray} $$
Loop 2
Applying Kirchhoff's loop rule to the loop on the right, starting from the left of the battery: $$ \begin{eqnarray} 0 &=& \sum \Delta V \\ &=& +V_2 + I_3 R_3 \\ &=& + ~v_2~ + ~r_3~ I_3 \\ \Rightarrow I_3 &=& -\frac{~v_2~}{~r_3~} A = [[return sf_latex(i_3)]]A \tag{2} \end{eqnarray} $$ Put (2) into (1): $$ \begin{eqnarray} 0 &=& ~r_1~ I_1 - 30 I_3 - 1 \\ &=& ~r_1~ I_1 - 30 (-\frac{~v_2~}{~r_3~}) - 1 \\ &=& ~r_1~ I_1 + ~v_2~ - ~v_1~ \\ &=& ~r_1~ I_1 + [[return sf_latex(~v_2~ - ~v_1~, 0)]] \\ \Rightarrow I_1 &=& -\frac{[[return sf_latex(~v_2~ - ~v_1~, 0)]]}{~r_1~} A = [[return sf_latex(i_1)]] A \end{eqnarray} $$
Junction rule
Apply Kirchhoff's junction rule to point $a$: $$ \begin{eqnarray} 0 &=& \sum I \\ &=& I_1 + I_2 + I_3 \qquad \text{(all + because every $I$ flows INTO $a$)} \\ &=& ([[return sf_latex(i_1)]]A) + I_2 + ([[return sf_latex(i_3)]]A) \\ \Rightarrow I_2 &=& -([[return sf_latex(i_1)]]A) - ([[return sf_latex(i_3)]]A) \\ &=& [[return sf_latex(i_2)]]A \end{eqnarray} $$
Summary
$$ \begin{eqnarray} I_1 &=& [[return sf_latex(i_1)]]A \\ I_2 &=& [[return sf_latex(i_2)]]A \\ I_3 &=& [[return sf_latex(i_3)]]A \end{eqnarray} $$ The negative currents flow opposite to the arrows in the figure.
$I_1 = $
return sf_math(i_1)
5%
$A$
$I_2 = $
return sf_math(i_2)
5%
$A$
$I_3 = $
return sf_math(i_3)
5%
$A$
current || resistance

Exercise - Irreducible circuit 3

if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(8, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 20; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 30; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return -2; } else { return random_min_max_precision(-6, -1, 0); //defined in setup_exercise_all.js }
return (true);
Circuit diagram.
Given $I_2 = ~i_2~ A$, find $I_1$, $I_3$, and $V_1$.
i_3 = (~r_2~ * ~i_2~ + ~v_3~) / ~r_3~; i_1 = -1 * ~i_2~ - i_3; v_1 = ~r_1~ * i_1 - ~r_3~ * i_3 + ~v_3~;
Hint: Apply Kirchhoff's loop rule twice and the juction rule once to get three equations, then solve for the three unknowns.

Solution

Circuit diagram.
Loop 1
Applying Kirchhoff's loop rule to the loop on the left, starting from the left of the battery: $$ \begin{eqnarray} 0 &=& \sum \Delta V \\ &=& - V_1 + V_3 - I_3 R_3 + I_1 R_1 \\ &=& - V_1 + ~v_3~ - ~r_3~ I_3 + ~r_1~ I_1 \\ \Rightarrow V_1 &=& ~r_1~ I_1 - ~r_3~ I_3 + ~v_3~ \tag{1} \end{eqnarray} $$
Loop 2
Applying Kirchhoff's loop rule to the loop on the right, starting from the left of the battery: $$ \begin{eqnarray} 0 &=& \sum \Delta V \\ &=& - I_2 R_2 + I_3 R_3 - V_3 \\ \Rightarrow I_3 R_3 &=& I_2 R_2 + V_3 \\ \Rightarrow I_3 &=& \frac{I_2 R_2 + V_3}{R_3} \\ &=& \frac{(~r_2~) (~i_2~) + ~v_3~}{~r_3~} \\ &=& [[return sf_latex(i_3)]]A \tag{2} \end{eqnarray} $$
Junction rule
Apply Kirchhoff's junction rule to point $a$: $$ \begin{eqnarray} 0 &=& \sum I \\ &=& I_1 + I_2 + I_3 \qquad \text{(all + because every $I$ flows INTO $a$)} \\ \Rightarrow I_1 &=& - I_2 - I_3 \\ &=& -(~i_2~ A) - ([[return sf_latex(i_3)]]A) \\ &=& [[return sf_latex(i_1)]]A \end{eqnarray} $$ Put $I_1 = [[return sf_latex(i_1)]]A$ and $I_3 = [[return sf_latex(i_3)]]A$ into (1): $$ \begin{eqnarray} V_1 &=& ~r_1~ I_1 - ~r_3~ I_3 + ~v_3~ \\ &=& (~r_1~) ([[return sf_latex(i_1)]]) - (~r_3~) ([[return sf_latex(i_3)]]) + ~v_3~ \\ &=& [[return sf_latex(v_1)]] V \end{eqnarray} $$
Summary
$$ \begin{eqnarray} I_1 &=& [[return sf_latex(i_1)]]A \\ I_3 &=& [[return sf_latex(i_3)]]A \\ V_1 &=& [[return sf_latex(v_1)]]V \end{eqnarray} $$ The negative currents flow opposite to the arrows in the figure.
$I_1 = $
return sf_math(i_1)
5%
$A$
$I_3 = $
return sf_math(i_3)
5%
$A$
$V_1 = $
return sf_math(v_1)
5%
$V$
current || resistance

Example - Irreducible circuit example xxx not use

Circuit diagram.
Calculate the currents.

Solution

Circuit diagram.
Loop 1
Applying Kirchhoff's loop rule to the loop on the left, starting from the left of the battery: $$ \begin{eqnarray} 0 &=& \sum \Delta V \\ &=& -V_1 - I_3 R_3 + I_1 R_1 \\ &=& - 1 - 30 I_3 + 10 I_1 \\ &=& 10 I_1 - 30 I_3 - 1 \tag{1} \end{eqnarray} $$
Loop 2
Applying Kirchhoff's loop rule to the loop on the right, starting from the left of the battery: $$ \begin{eqnarray} 0 &=& \sum \Delta V \\ &=& +V_2 + I_3 R_3 \\ &=& + 2 + 30 I_3 \\ \Rightarrow I_3 &=& -\frac{2}{30} A = -0.067A \tag{2} \end{eqnarray} $$ The negative sign in $I_3$ indicates it is actually flowing opposite to the arrow in the figure.
Put (2) into (1): $$ \begin{eqnarray} 0 &=& 10 I_1 - 30 I_3 - 1 \\ &=& 10 I_1 - 30 (-\frac{2}{30}) - 1 \\ &=& 10 I_1 + 2 - 1 \\ &=& 10 I_1 + 1 \\ \Rightarrow I_1 &=& -\frac{1}{10} A = -0.1A \end{eqnarray} $$
Junction rule
Apply Kirchhoff's junction rule to point $a$: $$ \begin{eqnarray} 0 &=& \sum I \\ &=& I_1 + I_2 + I_3 \qquad \text{(all + because every $I$ flows INTO $a$)} \\ &=& -\frac{1}{10} + I_2 -\frac{2}{30} \\ \Rightarrow I_2 &=& \frac{1}{10} + \frac{2}{30} \\ &=& \frac{5}{30} A = +0.167A \end{eqnarray} $$ The negative sign in $I_2$ indicates it is actually flowing opposite to the arrow in the figure.
Summary
$$ \begin{eqnarray} I_1 &=& -\frac{1}{10} A \\ I_2 &=& +\frac{5}{30} A \\ I_3 &=& -\frac{2}{30} A \end{eqnarray} $$ The negative currents flow opposite to the arrows in the figure.
current || resistance

Example - Irreducible circuit example 1

Circuit diagram.
Calculate the currents.

Solution

Circuit diagram.
Loop 1
Applying Kirchhoff's loop rule to the loop on the left, starting from the left of the battery: $$ \begin{eqnarray} 0 &=& \sum \Delta V \\ &=& -V_1 + V_3 - I_3 R_3 + I_1 R_1 \\ &=& - 1 + 3 - 30 I_3 + 10 I_1 \\ &=& 10 I_1 - 30 I_3 + 2 \tag{1} \end{eqnarray} $$
Loop 2
Applying Kirchhoff's loop rule to the loop on the right, starting from the bottom left corner of the loop: $$ \begin{eqnarray} 0 &=& \sum \Delta V \\ &=& - I_2 R_2 + I_3 R_3 - V_3 \\ &=& - 20 I_2 + 30 I_3 - 3 \tag{2} \end{eqnarray} $$
Junction rule
Apply Kirchhoff's junction rule to point $a$ (note that all + because every $I$ flows INTO $a$): $$ \begin{eqnarray} 0 &=& \sum I \\ &=& I_1 + I_2 + I_3 \tag{3} \end{eqnarray} $$
Solving
Collecting all three equations: $$ \begin{eqnarray} \left\{ % Comment a closing brace to remove the error warning. } \begin{array}{rll} % Change to rl if text is no needed. 0 &= 10 I_1 - 30 I_3 + 2 & \text{(1)} \\ 0 &= - 20 I_2 + 30 I_3 - 3 & \text{(2)} \\ 0 &= I_1 + I_2 + I_3 & \text{(3)} \end{array} % If tag is used instead of text, then it will label the whole set. \right. \end{eqnarray} $$ From (3), we get $I_1 = -I_2 - I_3$. Put this into (1): $$ \begin{eqnarray} 0 &=& 10 I_1 - 30 I_3 + 2 \\ &=& 10 (-I_2 - I_3) - 30 I_3 + 2 \\ &=& - 10 I_2 - 40 I_3 + 2 \tag{1'} \end{eqnarray} $$ Multiple (1') by 2 gives: $$ 0 = - 20 I_2 - 80 I_3 + 4 \tag{1''} $$ (2) - (1'') gives: $$ \begin{eqnarray} 0 &=& 30 I_3 - 3 + 80 I_3 - 4\\ &=& 110 I_3 - 7 \\ \Rightarrow I_3 &=& \frac{7}{110}A = 0.0636A \end{eqnarray} $$ (1') gives: $$ \begin{eqnarray} 10 I_2 &=& - 40 I_3 + 2 \\ \Rightarrow I_2 &=& - 4 I_3 + \frac{2}{10} \\ &=& - 4 (0.0636A) + 0.2 \\ &=& -0.0545A \end{eqnarray} $$ Put into (3) gives: $$ \begin{eqnarray} I_1 &=& -I_2 - I_3 \\ &=& 0.0545A - 0.0636A \\ &=& -0.0091A \end{eqnarray} $$
Summary
$$ \begin{eqnarray} I_1 &=& -0.0091A \\ I_2 &=& -0.0545A \\ I_3 &=& +0.0636A \end{eqnarray} $$ The negative currents flow opposite to the arrows in the figure.
Optional technique - matrix solution

Solving the above equations by hand is not difficult but quite tedious. If you know how to use matrices on a calculator, you could also use the method below.

The three equations (1), (2) and (3) above can be written as: $$ \begin{eqnarray} \left\{ % comment a closing brace to remove the error warning } \begin{array}{rl} 10 I_1 + 0 I_2 - 30 I_3 &= - 2 \\ 0 I_1 - 20 I_2 + 30 I_3 &= 3 \\ I_1 + I_2 + I_3 &= 0 \end{array} \right. \end{eqnarray} $$ These equations can be written as: $$ \left(\begin{array}{ccc}10 & 0 & -30 \\0 & -20 & 30 \\1 & 1 & 1\end{array}\right) \left(\begin{array}{c}I_1 \\I_2 \\I_3\end{array}\right) = \left(\begin{array}{c}-2 \\3 \\0\end{array}\right) $$

Calling the matrices and vectors above ${\cal R}, {\cal I}$, and ${\cal V}$, we can write the equation as: $$ \begin{eqnarray} {\cal R} {\cal I} &=& {\cal V} \\ \Rightarrow {\cal I} &=& {\cal R}^{-1} {\cal V} \end{eqnarray} $$ Use your calculator to find the inverse matrix ${\cal R}^{-1}$ and multiply to ${\cal V}$ then gives: $$ \begin{eqnarray} \Rightarrow {\cal I} = \left(\begin{array}{c}I_1 \\I_2 \\I_3\end{array}\right) &=& \left(\begin{array}{c}-0.0091A \\ -0.0545A \\+0.0636A \end{array}\right) \\ \end{eqnarray} $$

current || resistance

Exercise - Resistance of a block from resistivity

if (int_count_times_randomized == 0){ return 1.5; } else { return random_min_max_precision(1, 2, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(3, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 14; } else { return random_min_max_precision(3, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 16; } else { return random_min_max_precision(3, 20, 0); //defined in setup_exercise_all.js }
return (true);
A block of metal with resistivity $~rho~ \times 10^{-8} \Omega m$. The block is not drawn to scale.
A block of metal with resistivity $~rho~ \times 10^{-8} \Omega m$ has dimensions $x = ~x~ cm$, $y = ~y~ cm$, and $z = ~z~ cm$. Find the resistance $R_x$, $R_y$, and $R_z$ (e.g. $R_x$ is the resistance of the block when the current is flowing along the $x$ direction).

Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
R_x = ~rho~ * 1e-8 * ~x~ / (~y~ * ~z~) * 100; R_y = ~rho~ * 1e-8 * ~y~ / (~x~ * ~z~) * 100; R_z = ~rho~ * 1e-8 * ~z~ / (~y~ * ~x~) * 100;
Hint: $R = \rho \frac{l}{A}$

Solution

$R_x$
$$ \begin{eqnarray} R_x &=& \rho \frac{l_x}{A_{yz}} \\ &=& \rho \frac{x}{yz} \\ &=& (~rho~ \times 10^{-8} \Omega m) \frac{~x~ \times 0.01 m}{(~y~ \times 0.01 m) (~z~ \times 0.01 m)} \\ &=& [[return sf_latex(R_x)]] \Omega \end{eqnarray} $$
$R_y$
$$ \begin{eqnarray} R_y &=& \rho \frac{l_y}{A_{xz}} \\ &=& \rho \frac{y}{xz} \\ &=& (~rho~ \times 10^{-8} \Omega m) \frac{~y~ \times 0.01 m}{(~x~ \times 0.01 m) (~z~ \times 0.01 m)} \\ &=& [[return sf_latex(R_y)]] \Omega \end{eqnarray} $$
$R_z$
$$ \begin{eqnarray} R_z &=& \rho \frac{l_z}{A_{xy}} \\ &=& \rho \frac{z}{xy} \\ &=& (~rho~ \times 10^{-8} \Omega m) \frac{~z~ \times 0.01 m}{(~x~ \times 0.01 m) (~y~ \times 0.01 m)} \\ &=& [[return sf_latex(R_z)]] \Omega \end{eqnarray} $$
$R_x= $
return sf_math(R_x)
5%
$\Omega$
$R_y= $
return sf_math(R_y)
5%
$\Omega$
$R_z= $
return sf_math(R_z)
5%
$\Omega$
current || resistance

Exercise - Resistance of three resistors in a triangle

if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
return (true);
Three resistors connected in a triangle.
Three resistors ($R_1 = ~R_1~ \Omega$, $R_2 = ~R_2~ \Omega$, $R_3 = ~R_3~ \Omega$) are connected in a triangle as shown.
  1. Find $R_{ab}$ (the resistance if the current goes in at point $a$ and leaves at point $b$).
  2. Find $R_{bc}$.
  3. Find $R_{ac}$.
Hint: Each case is equivalent to two parallel branches, one with a single resistor, the other with two.
R_12 = ~R_1~ + ~R_2~; R_23 = ~R_2~ + ~R_3~; R_13 = ~R_1~ + ~R_3~; R_ab = 1 / (1 / ~R_1~ + 1 / R_23); R_bc = 1 / (1 / ~R_3~ + 1 / R_12); R_ac = 1 / (1 / ~R_2~ + 1 / R_13);

Solution

$R_{ab}$
Current passing from $a$ to $b$.
For a current passing from $a$ to $b$, the triangle is equivalent to the circuit show to the right. $$ \begin{eqnarray} R_{23} &=& R_2 + R_3 = ~R_2~ + ~R_3~ = [[return sf_latex(R_23, 0)]] \Omega \\ \Rightarrow R_{ab} &=& (R_1^{-1} + R_{23}^{-1})^{-1} \\ &=& (~R_1~ ^{-1} + [[return sf_latex(R_23, 0)]] ^{-1})^{-1} \Omega \\ &=& [[return sf_latex(R_ab)]] \Omega \end{eqnarray} $$
$R_{bc}$
Current passing from $b$ to $c$.
For a current passing from $b$ to $c$: $$ \begin{eqnarray} R_{12} &=& R_1 + R_2 = ~R_1~ + ~R_2~ = [[return sf_latex(R_12, 0)]] \Omega \\ \Rightarrow R_{bc} &=& (R_3^{-1} + R_{12}^{-1})^{-1} \\ &=& (~R_3~ ^{-1} + [[return sf_latex(R_12, 0)]] ^{-1})^{-1} \Omega \\ &=& [[return sf_latex(R_bc)]] \Omega \end{eqnarray} $$
$R_{ac}$
Current passing from $a$ to $c$.
For a current passing from $a$ to $c$: $$ \begin{eqnarray} R_{13} &=& R_1 + R_3 = ~R_1~ + ~R_3~ = [[return sf_latex(R_13, 0)]] \Omega \\ \Rightarrow R_{ac} &=& (R_2^{-1} + R_{13}^{-1})^{-1} \\ &=& (~R_2~ ^{-1} + [[return sf_latex(R_13, 0)]] ^{-1})^{-1} \Omega \\ &=& [[return sf_latex(R_ac)]] \Omega \end{eqnarray} $$
$R_{ab} = $
return sf_math(R_ab)
5%
$\Omega$
$R_{bc} = $
return sf_math(R_bc)
5%
$\Omega$
$R_{ac} = $
return sf_math(R_ac)
5%
$\Omega$
current || resistance

Exercise - Wheatstone bridge

if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 5, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(6, 15, 0); //defined in setup_exercise_all.js }
return (~R_2~ *(~emf~) - (~R_1~ + ~R_2~)* (~V_G~) > 0);
A Wheatstone bridge. The rectangular blocks represent resistors. The arrow on $R_2$ indicates its resistance is adjustable.
Rhdv, CC BY-SA 3.0 , via Wikimedia Commons
The figure shows a Wheatstone bridge, a setup with four resistors and one voltmeter in the middle that can be used to measure resistance to a high accuracy. $R_X$ is the unknown resistance to be measured, while the values of $R_1$ and $R_3$ are known. To find $R_X$, the value of $R_2$ is adjusted until the voltmeter shows $V_G=0V$.
  1. Assume $V_G=0V$:
    1. Write $\frac{R_X}{R_3}$ in terms of $R_1$ and $R_2$. (Symbolic manipulations, no online submission.)
    2. Given $R_1 = ~R_1~ \Omega$, $R_2 = ~R_2~ \Omega$, $R_3 = ~R_3~ \Omega$, calculate $R_X$.
  2. Suppose voltemeter measures $V_G = \Delta V_{DB} = V_D - V_B \neq 0$. A typical voltmeter has high resistance, so we can assume $I_G \approx 0A$ (i.e. very little current flows through the voltmeter).
    1. Apply Kirchhoff's loop rule twice to get two equations, one for $I_B R_3$, another for $I_B R_X$ in terms of $R_1$, $R_2$, $I_B$, and $V_G$. Do not substitute the numerical values. (Symbolic manipulations, no online submission.)
    2. Find $I_D$ in terms of $R_1$, $R_2$, and $\cal E$ (emf of the battery). (Symbolic manipulations, no online submission.)
    3. Combine the results above to find $\frac{R_X}{R_3}$ in terms of all other resistance, as well as $V_G$ and $\cal E$. There should be no current in your expression. (Symbolic manipulations, no online submission.)
    4. Given $R_1 = ~R_1~ \Omega$, $R_2 = ~R_2~ \Omega$, $R_3 = ~R_3~ \Omega$, $V_G = ~V_G~ V$ and ${\cal E} = ~emf~ V$, calculate $R_X$.
Hint: Apply Kirchhoff's loop rule.
R_X_1 = ~R_2~ / ~R_1~ * ~R_3~; ratio_R = ~R_2~ / (~R_1~ + ~R_2~); R_X_2 = ~R_3~ * (~R_2~ / (~R_1~ + ~R_2~) * ~emf~ - ~V_G~) / (~R_1~ / (~R_1~ + ~R_2~) * ~emf~ + ~V_G~);

Solution

When $V_G = 0V$
$\frac{R_X}{R_3}$
There is a current $I_B$ flowing from $A$ to $B$ to $C$, and another current $I_D$ flowing from $A$ to $D$ to $C$.

Applying Kirchhoff's loop rule to $BADB$: $$ \begin{eqnarray} 0 &=& \Delta V_{AB} + \Delta V_{DA} + \Delta V_{BD} \qquad \text{notation: $\Delta V_{AB} = V_A - V_B$} \\ &=& I_B R_3 - I_D R_1 + 0 \\ \Rightarrow I_B R_3 &=& I_D R_1 \tag{1} \end{eqnarray} $$ Applying Kirchhoff's loop rule to $BDCB$: $$ \begin{eqnarray} 0 &=& \Delta V_{DB} + \Delta V_{CD} + \Delta V_{BC} \\ &=& 0 - I_D R_2 + I_B R_X \\ \Rightarrow I_B R_X &=& I_D R_2 \tag{2} \end{eqnarray} $$ Taking the ratio $\frac{(2)}{(1)}$: $$ \begin{eqnarray} \frac{I_B R_X}{I_B R_3} &=& \frac{I_D R_2}{I_D R_1} \\ \Rightarrow \frac{R_X}{R_3} &=& \frac{R_2}{R_1} \end{eqnarray} $$
Numerical value of $R_X$
$$ \begin{eqnarray} \frac{R_X}{R_3} &=& \frac{R_2}{R_1} \\ \Rightarrow R_X &=& \frac{R_2}{R_1} R_3 \\ &=& \frac{~R_2~}{~R_1~} (~R_3~ \Omega) \\ &=& [[return sf_latex(R_X_1)]] \Omega \end{eqnarray} $$
When $V_G \neq 0V$
Two equations
If $I_G \approx 0A$, then the current flowing through $R_1$ and $R_2$ are the same, which we will call $I_D$. Similarly, the current through $R_3$ and $R_X$ are the same, which we will call $I_B$.

Applying Kirchhoff's loop rule to $BADB$: $$ \begin{eqnarray} 0 &=& \Delta V_{AB} + \Delta V_{DA} + \Delta V_{BD} \qquad \text{notation: $\Delta V_{AB} = V_A - V_B$} \\ &=& I_B R_3 - I_D R_1 - V_G \\ \Rightarrow I_B R_3 &=& I_D R_1 + V_G \tag{3} \end{eqnarray} $$ Applying Kirchhoff's loop rule to $BDCB$: $$ \begin{eqnarray} 0 &=& \Delta V_{DB} + \Delta V_{CD} + \Delta V_{BC} \\ &=& V_G - I_D R_2 + I_B R_X \\ \Rightarrow I_B R_X &=& I_D R_2 - V_G \tag{4} \end{eqnarray} $$
$I_D$
Applying Kirchhoff's loop rule to the battery and $R_1$, $R_2$: $$ \begin{eqnarray} 0 &=& {\cal E} - I_D R_1 - I_D R_2 \\ \Rightarrow I_D &=& \frac{\cal E}{R_1 + R_2} \tag{5} \end{eqnarray} $$
$\frac{R_X}{R_3}$
Taking the ratio $\frac{(4)}{(3)}$: $$ \begin{eqnarray} \frac{I_B R_X}{I_B R_3} &=& \frac{I_D R_2 - V_G}{I_D R_1 + V_G} \\ \Rightarrow \frac{R_X}{R_3} &=& \frac{\frac{\cal E}{R_1 + R_2} R_2 - V_G}{\frac{\cal E}{R_1 + R_2} R_1 + V_G} \qquad \text{ substitute in (5)} \\ &=& \frac{\frac{R_2}{R_1 + R_2} {\cal E} - V_G}{\frac{R_1}{R_1 + R_2} {\cal E} + V_G} \\ &=& \frac{R_2 {\cal E} - (R_1 + R_2) V_G}{R_1 {\cal E} + (R_1 + R_2) V_G} \end{eqnarray} $$
Numerical value of $R_X$
$$ \begin{eqnarray} \frac{R_X}{R_3} &=& \frac{R_2 {\cal E} - (R_1 + R_2) V_G}{R_1 {\cal E} + (R_1 + R_2) V_G} \\ \Rightarrow R_X &=& \frac{R_2 {\cal E} - (R_1 + R_2) V_G}{R_1 {\cal E} + (R_1 + R_2) V_G} R_3 \\ &=& \frac{~R_2~ (~emf~) - (~R_1~ + ~R_2~) (~V_G~)}{~R_1~ (~emf~) + (~R_1~ + ~R_2~) (~V_G~)} (~R_3~ \Omega) \\ &=& [[return sf_latex(R_X_2)]] \Omega \end{eqnarray} $$
If $V_G = 0V$: $R_X = $
return sf_math(R_X_1)
5%
$\Omega$
If $V_G \neq 0V$: $R_X = $
return sf_math(R_X_2)
5%
$\Omega$