if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(0, 4, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 0.4;
} else {
return random_min_max_precision(0.1, 2, 1); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 18;
} else {
return random_min_max_precision(5, 500, 0); //defined in setup_exercise_all.js
}
return (true);
A [[return namespace_resistance.array_metal_name[~index~] ]] wire ($n = [[return sf_latex(namespace_resistance.density)]] m^{-3}$) with radius $r = ~radius~ mm$ carries a current of $~current~ mA$. Find:
The current density.
The magnitude of the drift velocity.
Use $e = 1.6\times 10^{-19}C$. Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint:
$$
\begin{eqnarray}
j &=& \frac{I}{A} = n q v_d \\
I &=& n q v_d A
\end{eqnarray}
$$
if (int_count_times_randomized == 0){
return 10;
} else {
return random_min_max_precision(1, 20, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 2;
} else {
return random_min_max_precision(1, 20, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 4;
} else {
return random_min_max_precision(1, 20, 0); //defined in setup_exercise_all.js
}
return (~i_1~ != ~i_2~);
[[
namespace_resistance.r = ~v_1~ / ~i_1~;
namespace_resistance.v_2 = namespace_resistance.r * ~i_2~;
return "";
]]
When a battery with a potential difference of $V_1 = ~v_1~ V$ is applied across a resistor, a current $I_1 = ~i_1~ A$ flows through.
Find the resistance $R$.
If the current is changed to $I_2 = ~i_2~ A$, what would be the potential difference $V_2$ across the resistor?
$R$ stays the same, so we have:
$$
\begin{eqnarray}
V_2 &=& I_2 R \\
&=& (~i_2~ A)([[return sf_latex(namespace_resistance.r)]] \Omega) \\
&=& [[return sf_latex(namespace_resistance.v_2)]] V
\end{eqnarray}
$$
$R = $
return sf_math(namespace_resistance.r)
5%
$V_2 = $
return sf_math(namespace_resistance.v_2)
5%
$V$
Select unit for resistance:
$A$
$V$
$F$
$\Omega$
3
current || resistance
Exercise - Resistance from resistivity
if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(0, 4, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 0.4;
} else {
return random_min_max_precision(0.1, 2, 1); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 400;
} else {
return random_min_max_precision(10, 500, -1); //defined in setup_exercise_all.js
}
return (true);
Find the resistance of a $~l~ cm$ long [[return namespace_resistance.array_metal_name[~index~] ]] wire ($\rho = [[return sf_latex(namespace_resistance.resistivity)]] \Omega m$) with radius $r = ~radius~ mm$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
$$
\begin{eqnarray}
V &=& I R \\
&=& (~i~ A)(~r~ \Omega) \\
&=& [[return sf_latex(namespace_resistance.v)]] V
\end{eqnarray}
$$
Power
$$
\begin{eqnarray}
P &=& I^2 R \\
&=& (~i~ A)^2(~r~ \Omega) \\
&=& [[return sf_latex(namespace_resistance.p)]] W
\end{eqnarray}
$$
$P = [[return sf_latex(namespace_resistance.p)]] W = [[return sf_latex(namespace_resistance.p)]] J/s$. It means that $[[return sf_latex(namespace_resistance.p)]] J$ is being released by the resistor every second.
Alternatively:
$$
\begin{eqnarray}
P &=& I V \\
&=& (~i~ A)([[return sf_latex(namespace_resistance.v)]] V) \\
&=& [[return sf_latex(namespace_resistance.p)]] W
\end{eqnarray}
$$
$V = $
return sf_math(namespace_resistance.v)
5%
$P = $
return sf_math(namespace_resistance.p)
5%
Select unit for potential difference:
$C$
$V$
$J$
$W$
1
Select unit for power:
$C$
$V$
$J$
$W$
3
current || resistance
Exercise - Eqivalent resistance of two resistors
Resistors in series and in parallel.
Find the equivlent resistance.
if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 2;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
Hint:
$R_{series} = R_1 + R_2$: resistors in series.
$R_{parallel} = (R_1^{-1} + R_2^{-1})^{-1}$: resistors in parallel
All three currents point into the junction according to the diagram, so $\sum I_{in} = I_1 + I_2 + I_3$, $\sum I_{out} = 0$. The junction rule gives:
$$
\begin{eqnarray}
I_{in} &=& I_{out} \\
I_1 + I_2 + I_3 &=& 0 \\
\Rightarrow I_3 &=& -I_1 - I_2 \\
&=& - (~i_1~A) - (~i_2~ A) \\
&=& [[return sf_latex(namespace_resistance.i_3)]] A
\end{eqnarray}
$$
Two currents point into the junction according to the diagram, so $\sum I_{in} = I_1 + I_2$, but one current point out from the junction $\sum I_{out} = I_3$. The junction rule gives:
$$
\begin{eqnarray}
I_{in} &=& I_{out} \\
\Rightarrow I_1 + I_2 &=& I_3 \\
\Rightarrow I_3 &=& I_1 + I_2 \\
&=& (~i_1~ A) + (~i_2~ A) \\
&=& [[return sf_latex(namespace_resistance.i_3)]] A
\end{eqnarray}
$$
$I_3= $
return sf_math(namespace_resistance.i_3)
5%
$A$
current
Exercise - Kirchhoff's loop rule
if (int_count_times_randomized == 0){
return 10;
} else {
return random_min_max_precision(-12, 12, 0, false, -0.1, 0.1); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 6;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 4;
} else {
return random_min_max_precision(-5, 5, 0, false, -0.1, 0.1); //defined in setup_exercise_all.js
}
return (true);
A closed loop with battery, a resistor, and an unknown component.
The figure shows a closed circuit with a battery, a resistor, and an unknown component (which may contain many things, including its own power supply). Find the following potential change (beware of the signs):
$\Delta V_{ba} = V_b - V_a$, i.e. the potential change when going from $a$ to $b$.
$\Delta V_{cb} = V_c - V_b$, i.e. the potential change when going from $b$ to $c$.
$\Delta V_{dc} = V_d - V_c$, i.e. the potential change when going from $c$ to $d$.
$\Delta V_{da} = V_d - V_a$, i.e. the total potential change when going from $a$ to $d$.
Going from $a$ to $b$ means going from the negative terminal of the battery (low $V$) to the positive terminal (high $V$), so that is an increase in potential, magnitude given by the emf:
$$
\Delta V_{ba} = +\mathcal{E} = [[return namespace_resistance.v_ba]] V
$$
Going from $a$ to $b$ means going from the positive terminal (high $V$) to the negative terminal of the battery (low $V$), so that is an decrease in potential, magnitude given by the emf:
$$
\Delta V_{ba} = -\mathcal{E} = ~emf~ V
$$
The figure shows current flowing to the right, from $b$ to $c$. Since current always flows from high $V$ to low $V$ (like water!), this is a decrease in electric potential, magnitude given by Ohm's law:
$$
\Delta V_{cb} = -I R = - ([[return Math.abs(~i~)]] A)(~r~ \Omega) = [[return namespace_resistance.v_cb]] V
$$
The figure shows current flowing to the left, from $c$ to $b$. Since current always flows from high $V$ to low $V$ (like water!), this is a increase in electric potential, magnitude given by Ohm's law:
$$
\Delta V_{cb} = +I R = + ([[return Math.abs(~i~)]] A)(~r~ \Omega) = [[return namespace_resistance.v_cb]] V
$$
By Kirchhoff's loop rule, the total change in potential must be zero, therefore:
$$
\begin{eqnarray}
0 &=& \sum_{loop} \Delta V \\
&=& \Delta V_{ba} + \Delta V_{cb} + \Delta V_{dc} \\
\Rightarrow \Delta V_{dc} &=& -\Delta V_{ba} - \Delta V_{cb} \\
&=& -([[return namespace_resistance.v_ba]] V) - ([[return namespace_resistance.v_cb]] V) \\
&=& [[return namespace_resistance.v_dc]] V
\end{eqnarray}
$$
By Kirchhoff's loop rule, going from $a$ to $d$ basically completes a whole loop, so the total change in potential must be zero:
$$
\Delta V_{da} = 0V
$$
One can also verify with our previous numbers that:
$$
\Delta V_{da} = \Delta V_{dc} + \Delta V_{cb} + \Delta V_{ba} = 0V
$$
$\Delta V_{ba}= $
return sf_math(namespace_resistance.v_ba)
5%
$V$ $\Delta V_{cb}= $
return sf_math(namespace_resistance.v_cb)
5%
$V$ $\Delta V_{dc}= $
return sf_math(namespace_resistance.v_dc)
5%
$V$ $\Delta V_{da}= $
return 0
5%
$V$
current || resistance
Exercise - A circuit with a single resistor
Circuit with a single resistor.
Find the current through the circuit given $R = ~~R_1 \Omega$ and the emf of the battery $V_0 = ~~V_0 V$.
if (int_count_times_randomized == 0){
return 12;
} else {
return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 4;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
Hint: Apply Ohm's law $V=IR$ across the resistor. The voltage across the resistor is the same as battery.
Solution
Apply Ohm's law $V=IR$ across the resistor. The voltage across the resistor is the same as battery because it is the only component in connected with the battery.
$$
I = \frac{V_0}{R} = \frac{[[return ~~V_0]] V}{[[return ~~R_1]] \Omega} = [[return (~~V_0/~~R_1).toFixed(1)]] A.
$$
$I = $
return (~~V_0 / ~~R_1).toFixed(1)
0.2
Select unit:
$\Omega$
$A$
$V$
$mA$
1
current || resistance
Exercise - A circuit with two resistors in series
Circuit with two resistors in series.
Find the total resistance $R_{12}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){
return 12;
} else {
return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 2;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
Hint 1: Find the total resistance using $R_{12} = R_1 + R_2$.
Hint 2: Apply Ohm's law $V=IR$ across the total resistance. The voltage across the resistor is the same as battery.
For resistors in series, just add the resistance for the total resistance:
$$
R_{12} = R_1 + R_2 = [[return ~~R_1]] + [[return ~~R_2]] = [[return (namespace_resistance.R_12).toFixed(1)]] \Omega
$$
Apply Ohm's law $V=IR$ across the total resistance to get the total current.
$$
I_{12} = \frac{V_0}{R_{12}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_12).toFixed(0)]]} = [[return (namespace_resistance.I).toFixed(2)]] A.
$$
Since the resistors are connected in series, they must have the same current.
Applying Ohm's law to each resistor, we get their voltages:
$$
V_1 = I_1 R_1 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_1]]) = [[return (namespace_resistance.I * ~~R_1).toFixed(2)]] V
$$
$$
V_2 = I_2 R_2 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_2]]) = [[return (namespace_resistance.I * ~~R_2).toFixed(2)]] V
$$
Check:
$V_{0} = V_1 + V_2$ as expected.
For resistors in series, just add the resistance for the total resistance:
$$
R_{123} = R_1 + R_2 + R_3 = [[return ~~R_1]] + [[return ~~R_2]] + [[return ~~R_3]] = [[return (namespace_resistance.R_123).toFixed(1)]] \Omega
$$
Apply Ohm's law $V=IR$ across the total resistance to get the total current.
$$
I_{123} = \frac{V_0}{R_{123}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_123).toFixed(0)]]} = [[return (namespace_resistance.I).toFixed(2)]] A.
$$
Since the resistors are connected in series, they must have the same current, i.e. $I_1 = I_2 = I_3 = I_{123}$.
Applying Ohm's law to each resistor, we get their voltages:
$$
V_1 = I_1 R_1 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_1]]) = [[return (namespace_resistance.I * ~~R_1).toFixed(2)]] V
$$
$$
V_2 = I_2 R_2 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_2]]) = [[return (namespace_resistance.I * ~~R_2).toFixed(2)]] V
$$
$$
V_3 = I_3 R_3 = ([[return (namespace_resistance.I).toFixed(2)]]) ([[return ~~R_3]]) = [[return (namespace_resistance.I * ~~R_3).toFixed(2)]] V
$$
Check:
$V_{0} = V_1 + V_2 + V_3$ as expected.
For resistors in parallel, the total resistance is found by:
$$
R_{12} = (R_1^{-1} + R_2^{-1})^{-1} = (([[return ~~R_1]])^{-1} + ([[return ~~R_2]])^{-1})^{-1} = [[return (namespace_resistance.R_12).toFixed(2)]] \Omega
$$
Each branch in parallel have the same voltage:
$$
V_1 = V_0 = [[return (~~V_0).toFixed(0)]] V
$$
$$
V_2 = V_0 = [[return (~~V_0).toFixed(0)]] V
$$
Apply Ohm's law $V=IR$ across the total resistance to get the total current.
$$
I_{12} = \frac{V_0}{R_{12}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_12).toFixed(2)]]} = [[return (namespace_resistance.I).toFixed(2)]] A.
$$
Apply Ohm's law $V=IR$ on each branch:
$$
I_1 = \frac{V_1}{R_1} = \frac{[[return ~~V_0]]}{[[return (~~R_1).toFixed(0)]]} = [[return (namespace_resistance.I_1).toFixed(2)]] A.
$$
$$
I_2 = \frac{V_2}{R_2} = \frac{[[return ~~V_0]]}{[[return (~~R_2).toFixed(0)]]} = [[return (namespace_resistance.I_2).toFixed(2)]] A.
$$
Check:
$I_{12} = I_1 + I_2$ as expected, currents from both branches merge to form the total current.
Total resistance $R_{12} = $
return (namespace_resistance.R_12).toFixed(2)
0.2
$\Omega$ Total current $I_{12} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$ $I_{1} = $
return (namespace_resistance.I_1).toFixed(2)
0.2
$A$ $I_{2} = $
return (namespace_resistance.I_2).toFixed(2)
0.2
$A$ $V_{1} = $
return (~~V_0).toFixed(0)
0.2
$V$ $V_{2} = $
return (~~V_0).toFixed(0)
0.2
$V$
current || resistance
Exercise - A circuit with three parallel branches
Circuit with three parallel branches.
Find the total resistance $R_{1234}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){
return 12;
} else {
return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 2;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 3;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 4;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
Hint:
Find the resistance of the branch $R_{34} = R_3+R_4$, then find the total resistance using $R_{1234} = (R_1^{-1} + R_2^{-1} + R_{34}^{-1})^{-1}$.
Each branch in the parallel component has the same voltage as the battery. Then apply Ohm's law to each resistor separately.
For resistors in parallel, the total resistance is found by:
$$
R_{34} = R_3 + R_4 = [[return ~~R_3]] + [[return ~~R_4]] = [[return (namespace_resistance.R_34).toFixed(0)]] \Omega
$$
$$
R_{1234} = (R_1^{-1} + R_2^{-1} + R_{34}^{-1})^{-1} = ([[return ~~R_1]]^{-1} + [[return ~~R_2]]^{-1} + [[return namespace_resistance.R_34]]^{-1} )^{-1} = [[return (namespace_resistance.R_1234).toFixed(2)]] \Omega
$$
Each branch in parallel have the same voltage:
$$
V_1 = V_0 = [[return (~~V_0).toFixed(0)]] V
$$
$$
V_2 = V_0 = [[return (~~V_0).toFixed(0)]] V
$$
For the last branch, the total voltage across the entire branch is:
$$
V_{34} = V_0 = [[return (~~V_0).toFixed(0)]] V
$$
However, $V_3 \neq V_4 \neq V_{34}$, we will work out $V_3$ and $V_4$ after we get the currents $I_3$ and $I_4$ later.
Apply Ohm's law $V=IR$ across the total resistance to get the total current.
$$
I_{1234} = \frac{V_0}{R_{1234}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_1234).toFixed(2)]]} = [[return (namespace_resistance.I).toFixed(2)]] A.
$$
Apply Ohm's law $V=IR$ on each branch:
$$
I_1 = \frac{V_1}{R_1} = \frac{[[return ~~V_0]]}{[[return (~~R_1).toFixed(0)]]} = [[return (namespace_resistance.I_1).toFixed(2)]] A.
$$
$$
I_2 = \frac{V_2}{R_2} = \frac{[[return ~~V_0]]}{[[return (~~R_2).toFixed(0)]]} = [[return (namespace_resistance.I_2).toFixed(2)]] A.
$$
For the last branch:
$$
I_{34} = \frac{V_3}{R_{34}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_34).toFixed(0)]]} = [[return (namespace_resistance.I_34).toFixed(2)]] A.
$$
Since $R_3$ and $R_4$ are on the same branch and in series, they must have the same current:
$$
I_3 = I_4 = I_{34} = [[return (namespace_resistance.I_34).toFixed(2)]] A.
$$
The current now allows us to work out the voltages $V_3$ and $V_4$:
$$
V_3 = I_3 R_3 = ([[return (namespace_resistance.I_34).toFixed(2)]])(~~R_3) = [[return (namespace_resistance.V_3).toFixed(2)]] V.
$$
$$
V_4 = I_4 R_4 = ([[return (namespace_resistance.I_34).toFixed(2)]])(~~R_4) = [[return (namespace_resistance.V_4).toFixed(2)]] V.
$$
Check:
$I_{1234} = I_1 + I_2 + I_{34}$ as expected, currents from all three branches merge to form the total current.
Total resistance $R_{1234} = $
return (namespace_resistance.R_1234).toFixed(2)
0.2
$\Omega$ Total current $I_{1234} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$ $I_{1} = $
return (namespace_resistance.I_1).toFixed(2)
0.2
$A$ $I_{2} = $
return (namespace_resistance.I_2).toFixed(2)
0.2
$A$ $I_{3} = $
return (namespace_resistance.I_34).toFixed(2)
0.2
$A$ $I_{4} = $
return (namespace_resistance.I_34).toFixed(2)
0.2
$A$ $V_{1} = $
return (~~V_0).toFixed(0)
0.2
$V$ $V_{2} = $
return (~~V_0).toFixed(0)
0.2
$V$ $V_{3} = $
return (namespace_resistance.V_3).toFixed(2)
0.2
$V$ $V_{4} = $
return (namespace_resistance.V_4).toFixed(2)
0.2
$V$
current || resistance
Exercise - A circuit with resistors in combination with one parallel block
Circuit with resistors in combination.
Find the total resistance $R_{1234}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){
return 12;
} else {
return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 2;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 3;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 4;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
Hint:
Find the resistance of the branch $R_{34} = R_3+R_4$.
Then calculate $R_{234} = (R_2^{-1} + R_{34}^{-1})^{-1}$.
Next find the total resistance using $R_{1234} = R_1 + R_{234}$.
For resistors in parallel, the total resistance is found by:
$$
R_{34} = R_3 + R_4 = [[return ~~R_3]] + [[return ~~R_4]] = [[return (namespace_resistance.R_34).toFixed(0)]] \Omega
$$
$$
R_{234} = (R_2^{-1} + R_{34}^{-1})^{-1} = ([[return ~~R_2]]^{-1} + [[return (namespace_resistance.R_34).toFixed(0)]]^{-1})^{-1} = [[return (namespace_resistance.R_234).toFixed(2)]] \Omega
$$
$$
R_{1234} = R_1+ R_{234} = [[return ~~R_1]] + [[return(namespace_resistance.R_234).toFixed(2)]] = [[return (namespace_resistance.R_1234).toFixed(2)]] \Omega
$$
Undoing the merge.
Apply Ohm's law $V=IR$ across the total resistance to get the total current.
$$
I_{1234} = \frac{V_0}{R_{1234}} = \frac{[[return ~~V_0]]}{[[return (namespace_resistance.R_1234).toFixed(2)]]} = [[return (namespace_resistance.I).toFixed(2)]] A.
$$
This gives the currents:
$$
I_1 = I_{234} = I_{1234} = [[return (namespace_resistance.I).toFixed(2)]] A.
$$
The voltage across $R_1$ can also be found:
$$
V_1 = I_1 R_1 = ([[return (namespace_resistance.I_1).toFixed(2)]])(~~R_1) = [[return (namespace_resistance.V_1).toFixed(2)]] V.
$$
$$
V_{234} = I_{234} R_{234} = ([[return (namespace_resistance.I_234).toFixed(2)]])([[return (namespace_resistance.R_234).toFixed(2)]]) = [[return (namespace_resistance.V_234).toFixed(2)]] V.
$$
Each branch in parallel have the same voltage:
$$
V_2 = V_{234} = [[return (namespace_resistance.V_234).toFixed(2)]] V
$$
$$
V_{34} = V_{234} = [[return (namespace_resistance.V_234).toFixed(2)]] V
$$
$$
I_2 = \frac{V_2}{R_2} = \frac{[[return (namespace_resistance.V_2).toFixed(2)]]}{[[return (~~R_2).toFixed(0)]]} = [[return (namespace_resistance.I_2).toFixed(2)]] A.
$$
For the last branch:
$$
I_{34} = \frac{V_3}{R_{34}} = \frac{[[return (namespace_resistance.V_34).toFixed(2)]]}{[[return (namespace_resistance.R_34).toFixed(0)]]} = [[return (namespace_resistance.I_34).toFixed(2)]] A.
$$
Since $R_3$ and $R_4$ are on the same branch and in series, they must have the same current:
$$
I_3 = I_4 = I_{34} = [[return (namespace_resistance.I_34).toFixed(2)]] A.
$$
The current now allows us to work out the voltages $V_3$ and $V_4$:
$$
V_3 = I_3 R_3 = ([[return (namespace_resistance.I_34).toFixed(2)]])(~~R_3) = [[return (namespace_resistance.V_3).toFixed(2)]] V.
$$
$$
V_4 = I_4 R_4 = ([[return (namespace_resistance.I_34).toFixed(2)]])(~~R_4) = [[return (namespace_resistance.V_4).toFixed(2)]] V.
$$
Final details.
Check:
$I_{1234} = I_1 = I_2 + I_{34}$ as expected, currents from all three branches merge to form the total current.
Total resistance $R_{1234} = $
return (namespace_resistance.R_1234).toFixed(2)
0.2
$\Omega$ Total current $I_{1234} = $
return (namespace_resistance.I).toFixed(2)
0.2
$A$ $I_{1} = $
return (namespace_resistance.I_1).toFixed(2)
0.2
$A$ $I_{2} = $
return (namespace_resistance.I_2).toFixed(2)
0.2
$A$ $I_{3} = $
return (namespace_resistance.I_3).toFixed(2)
0.2
$A$ $I_{4} = $
return (namespace_resistance.I_3).toFixed(2)
0.2
$A$ $V_{1} = $
return (namespace_resistance.V_1).toFixed(2)
0.2
$V$ $V_{2} = $
return (namespace_resistance.V_2).toFixed(2)
0.2
$V$ $V_{3} = $
return (namespace_resistance.V_3).toFixed(2)
0.2
$V$ $V_{4} = $
return (namespace_resistance.V_4).toFixed(2)
0.2
$V$
current || resistance
Exercise - A circuit with resistors in combination with two parallel blocks
Circuit with resistors in combination.
Find the total resistance $R_{1234}$, the currents, and voltages of the resistors.
if (int_count_times_randomized == 0){
return 12;
} else {
return random_min_max_precision(3, 12, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 2;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 3;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 4;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
Hint:
Find the resistance $R_{12} = (R_1^{-1}+R_2^{-1})^{-1}$ and $R_{34} = (R_3^{-1}+R_4^{-1})^{-1}$.
By conservation of current, we have:
$$
I_1 + I_2 + I_3 = 0 \tag{3}
$$
Together we have three equations for the three unknows ($I_1$, $I_2$ and $I_3$). Solve them any way you like. I will demonstrate one possible approach below.
From eqn(3), we get $I_1 = - I_2 - I_3$. Put into eqn(1):
$$
\begin{eqnarray}
0 &=& -V_1 + V_3 - I_3 R_3 + (- I_2 - I_3) R_1 \\
&=& -V_1 + V_3 - I_2 R_1 -I_3 (R_1+R_3)
\end{eqnarray}
$$
This gives us:
$$
\begin{eqnarray}
\left\{ % comment a closing brace to remove the error warning }
\begin{array}{rll}
0 &= -V_1 + V_3 - I_2 R_1 -I_3 (R_1+R_3) &\text{(1')} \\
0 &= V_2 - V_3 - I_2 R_2 + I_3 R_3 &\text{(2)}
\end{array}
\right.
\end{eqnarray}
$$
Multiply eqn(1') by $R_2$ and eqn(2) by $R_1$:
$$
\begin{eqnarray}
\left\{ % comment a closing brace to remove the error warning }
\begin{array}{rll}
0 &= (-V_1 + V_3)R_2 - I_2 R_1 R_2 -I_3 R_2 (R_1+R_3) & \text{(1'')} \\
0 &= (V_2 - V_3)R_1 - I_2 R_1 R_2 + I_3 R_1 R_3 & \text{(2')}
\end{array}
\right.
\end{eqnarray}
$$
Solving the above equations by hand is not difficult but quite tedious. If you know how to use matrices on a calculator, you could also use the method below.
The three equations (1), (2) and (3) above can be written as:
$$
\begin{eqnarray}
\left\{ % comment a closing brace to remove the error warning }
\begin{array}{rl}
R_1 I_1 + 0 I_2 - R_3 I_3 &= V_1 - V_3 \\
0 I_1 - R_2 I_2 + R_3 I_3 &= -V_2 + V_3 \\
I_1 + I_2 + I_3 &= 0
\end{array}
\right.
\end{eqnarray}
$$
These equations can be written as:
$$
\left(\begin{array}{ccc}R_1 & 0 & -R_3 \\0 & -R_2 & R_3 \\1 & 1 & 1\end{array}\right) \left(\begin{array}{c}I_1 \\I_2 \\I_3\end{array}\right)
= \left(\begin{array}{c}V_1 - V_3 \\-V_2 + V_3 \\0\end{array}\right)
$$
Calling the matrices and vectors above ${\cal R}, {\cal I}$, and ${\cal V}$, we can write the equation as:
$$
\begin{eqnarray}
{\cal R} {\cal I} &=& {\cal V} \\
\Rightarrow {\cal I} &=& {\cal R}^{-1} {\cal V}
\end{eqnarray}
$$
Use your calculator to find the inverse matrix ${\cal R}^{-1}$ and multiply to ${\cal V}$ then gives:
$$
\begin{eqnarray}
\Rightarrow {\cal I} = \left(\begin{array}{c}I_1 \\I_2 \\I_3\end{array}\right) &=& \left(\begin{array}{c}[[return sf_latex(namespace_resistance.i_1)]] A \\[[return sf_latex(namespace_resistance.i_2)]] A \\[[return sf_latex(namespace_resistance.i_3)]] A \end{array}\right) \\
\end{eqnarray}
$$
$I_1= $
return sf_math(namespace_resistance.i_1)
5%
$A$ $I_2= $
return sf_math(namespace_resistance.i_2)
5%
$A$ $I_3= $
return sf_math(namespace_resistance.i_3)
5%
$A$
current || resistance
Exercise - Irreducible circuit 1
if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 2;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 3;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 10;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 20;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 30;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
Hint:
Apply Kirchhoff's loop rule twice and the juction rule once to get three equations, then solve for the three unknowns.
Solution
Circuit diagram.
Loop 1
Applying Kirchhoff's loop rule to the loop on the left, starting from the left of the battery:
$$
\begin{eqnarray}
0 &=& \sum \Delta V \\
&=& - V_1 + V_3 - I_3 R_3 + I_1 R_1 \\
&=& - V_1 + ~v_3~ - ~r_3~ I_3 + ~r_1~ I_1 \\
\Rightarrow V_1 &=& ~r_1~ I_1 - ~r_3~ I_3 + ~v_3~ \tag{1}
\end{eqnarray}
$$
Loop 2
Applying Kirchhoff's loop rule to the loop on the right, starting from the left of the battery:
$$
\begin{eqnarray}
0 &=& \sum \Delta V \\
&=& - I_2 R_2 + I_3 R_3 - V_3 \\
\Rightarrow I_3 R_3 &=& I_2 R_2 + V_3 \\
\Rightarrow I_3 &=& \frac{I_2 R_2 + V_3}{R_3} \\
&=& \frac{(~r_2~) (~i_2~) + ~v_3~}{~r_3~} \\
&=& [[return sf_latex(i_3)]]A \tag{2}
\end{eqnarray}
$$
Junction rule
Apply Kirchhoff's junction rule to point $a$:
$$
\begin{eqnarray}
0 &=& \sum I \\
&=& I_1 + I_2 + I_3 \qquad \text{(all + because every $I$ flows INTO $a$)} \\
\Rightarrow I_1 &=& - I_2 - I_3 \\
&=& -(~i_2~ A) - ([[return sf_latex(i_3)]]A) \\
&=& [[return sf_latex(i_1)]]A
\end{eqnarray}
$$
Put $I_1 = [[return sf_latex(i_1)]]A$ and $I_3 = [[return sf_latex(i_3)]]A$ into (1):
$$
\begin{eqnarray}
V_1 &=& ~r_1~ I_1 - ~r_3~ I_3 + ~v_3~ \\
&=& (~r_1~) ([[return sf_latex(i_1)]]) - (~r_3~) ([[return sf_latex(i_3)]]) + ~v_3~ \\
&=& [[return sf_latex(v_1)]] V
\end{eqnarray}
$$
Summary
$$
\begin{eqnarray}
I_1 &=& [[return sf_latex(i_1)]]A \\
I_3 &=& [[return sf_latex(i_3)]]A \\
V_1 &=& [[return sf_latex(v_1)]]V
\end{eqnarray}
$$
The negative currents flow opposite to the arrows in the figure.
$I_1 = $
return sf_math(i_1)
5%
$A$ $I_3 = $
return sf_math(i_3)
5%
$A$ $V_1 = $
return sf_math(v_1)
5%
$V$
current || resistance
Example - Irreducible circuit example xxx not use
Circuit diagram.
Calculate the currents.
Solution
Circuit diagram.
Loop 1
Applying Kirchhoff's loop rule to the loop on the left, starting from the left of the battery:
$$
\begin{eqnarray}
0 &=& \sum \Delta V \\
&=& -V_1 - I_3 R_3 + I_1 R_1 \\
&=& - 1 - 30 I_3 + 10 I_1 \\
&=& 10 I_1 - 30 I_3 - 1 \tag{1}
\end{eqnarray}
$$
Loop 2
Applying Kirchhoff's loop rule to the loop on the right, starting from the left of the battery:
$$
\begin{eqnarray}
0 &=& \sum \Delta V \\
&=& +V_2 + I_3 R_3 \\
&=& + 2 + 30 I_3 \\
\Rightarrow I_3 &=& -\frac{2}{30} A = -0.067A \tag{2}
\end{eqnarray}
$$
The negative sign in $I_3$ indicates it is actually flowing opposite to the arrow in the figure.
Put (2) into (1):
$$
\begin{eqnarray}
0 &=& 10 I_1 - 30 I_3 - 1 \\
&=& 10 I_1 - 30 (-\frac{2}{30}) - 1 \\
&=& 10 I_1 + 2 - 1 \\
&=& 10 I_1 + 1 \\
\Rightarrow I_1 &=& -\frac{1}{10} A = -0.1A
\end{eqnarray}
$$
Junction rule
Apply Kirchhoff's junction rule to point $a$:
$$
\begin{eqnarray}
0 &=& \sum I \\
&=& I_1 + I_2 + I_3 \qquad \text{(all + because every $I$ flows INTO $a$)} \\
&=& -\frac{1}{10} + I_2 -\frac{2}{30} \\
\Rightarrow I_2 &=& \frac{1}{10} + \frac{2}{30} \\
&=& \frac{5}{30} A = +0.167A
\end{eqnarray}
$$
The negative sign in $I_2$ indicates it is actually flowing opposite to the arrow in the figure.
Summary
$$
\begin{eqnarray}
I_1 &=& -\frac{1}{10} A \\
I_2 &=& +\frac{5}{30} A \\
I_3 &=& -\frac{2}{30} A
\end{eqnarray}
$$
The negative currents flow opposite to the arrows in the figure.
current || resistance
Example - Irreducible circuit example 1
Circuit diagram.
Calculate the currents.
Solution
Circuit diagram.
Loop 1
Applying Kirchhoff's loop rule to the loop on the left, starting from the left of the battery:
$$
\begin{eqnarray}
0 &=& \sum \Delta V \\
&=& -V_1 + V_3 - I_3 R_3 + I_1 R_1 \\
&=& - 1 + 3 - 30 I_3 + 10 I_1 \\
&=& 10 I_1 - 30 I_3 + 2 \tag{1}
\end{eqnarray}
$$
Loop 2
Applying Kirchhoff's loop rule to the loop on the right, starting from the bottom left corner of the loop:
$$
\begin{eqnarray}
0 &=& \sum \Delta V \\
&=& - I_2 R_2 + I_3 R_3 - V_3 \\
&=& - 20 I_2 + 30 I_3 - 3 \tag{2}
\end{eqnarray}
$$
Junction rule
Apply Kirchhoff's junction rule to point $a$ (note that all + because every $I$ flows INTO $a$):
$$
\begin{eqnarray}
0 &=& \sum I \\
&=& I_1 + I_2 + I_3 \tag{3}
\end{eqnarray}
$$
Solving
Collecting all three equations:
$$
\begin{eqnarray}
\left\{ % Comment a closing brace to remove the error warning. }
\begin{array}{rll} % Change to rl if text is no needed.
0 &= 10 I_1 - 30 I_3 + 2 & \text{(1)} \\
0 &= - 20 I_2 + 30 I_3 - 3 & \text{(2)} \\
0 &= I_1 + I_2 + I_3 & \text{(3)}
\end{array} % If tag is used instead of text, then it will label the whole set.
\right.
\end{eqnarray}
$$
From (3), we get $I_1 = -I_2 - I_3$. Put this into (1):
$$
\begin{eqnarray}
0 &=& 10 I_1 - 30 I_3 + 2 \\
&=& 10 (-I_2 - I_3) - 30 I_3 + 2 \\
&=& - 10 I_2 - 40 I_3 + 2 \tag{1'}
\end{eqnarray}
$$
Multiple (1') by 2 gives:
$$
0 = - 20 I_2 - 80 I_3 + 4 \tag{1''}
$$
(2) - (1'') gives:
$$
\begin{eqnarray}
0 &=& 30 I_3 - 3 + 80 I_3 - 4\\
&=& 110 I_3 - 7 \\
\Rightarrow I_3 &=& \frac{7}{110}A = 0.0636A
\end{eqnarray}
$$
(1') gives:
$$
\begin{eqnarray}
10 I_2 &=& - 40 I_3 + 2 \\
\Rightarrow I_2 &=& - 4 I_3 + \frac{2}{10} \\
&=& - 4 (0.0636A) + 0.2 \\
&=& -0.0545A
\end{eqnarray}
$$
Put into (3) gives:
$$
\begin{eqnarray}
I_1 &=& -I_2 - I_3 \\
&=& 0.0545A - 0.0636A \\
&=& -0.0091A
\end{eqnarray}
$$
Summary
$$
\begin{eqnarray}
I_1 &=& -0.0091A \\
I_2 &=& -0.0545A \\
I_3 &=& +0.0636A
\end{eqnarray}
$$
The negative currents flow opposite to the arrows in the figure.
Optional technique - matrix solution
Solving the above equations by hand is not difficult but quite tedious. If you know how to use matrices on a calculator, you could also use the method below.
The three equations (1), (2) and (3) above can be written as:
$$
\begin{eqnarray}
\left\{ % comment a closing brace to remove the error warning }
\begin{array}{rl}
10 I_1 + 0 I_2 - 30 I_3 &= - 2 \\
0 I_1 - 20 I_2 + 30 I_3 &= 3 \\
I_1 + I_2 + I_3 &= 0
\end{array}
\right.
\end{eqnarray}
$$
These equations can be written as:
$$
\left(\begin{array}{ccc}10 & 0 & -30 \\0 & -20 & 30 \\1 & 1 & 1\end{array}\right) \left(\begin{array}{c}I_1 \\I_2 \\I_3\end{array}\right)
= \left(\begin{array}{c}-2 \\3 \\0\end{array}\right)
$$
Calling the matrices and vectors above ${\cal R}, {\cal I}$, and ${\cal V}$, we can write the equation as:
$$
\begin{eqnarray}
{\cal R} {\cal I} &=& {\cal V} \\
\Rightarrow {\cal I} &=& {\cal R}^{-1} {\cal V}
\end{eqnarray}
$$
Use your calculator to find the inverse matrix ${\cal R}^{-1}$ and multiply to ${\cal V}$ then gives:
$$
\begin{eqnarray}
\Rightarrow {\cal I} = \left(\begin{array}{c}I_1 \\I_2 \\I_3\end{array}\right) &=& \left(\begin{array}{c}-0.0091A \\ -0.0545A \\+0.0636A \end{array}\right) \\
\end{eqnarray}
$$
current || resistance
Exercise - Resistance of a block from resistivity
if (int_count_times_randomized == 0){
return 1.5;
} else {
return random_min_max_precision(1, 2, 1); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 10;
} else {
return random_min_max_precision(3, 20, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 14;
} else {
return random_min_max_precision(3, 20, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 16;
} else {
return random_min_max_precision(3, 20, 0); //defined in setup_exercise_all.js
}
return (true);
A block of metal with resistivity $~rho~ \times 10^{-8} \Omega m$. The block is not drawn to scale.
A block of metal with resistivity $~rho~ \times 10^{-8} \Omega m$ has dimensions $x = ~x~ cm$, $y = ~y~ cm$, and $z = ~z~ cm$. Find the resistance $R_x$, $R_y$, and $R_z$ (e.g. $R_x$ is the resistance of the block when the current is flowing along the $x$ direction).
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
For a current passing from $a$ to $b$, the triangle is equivalent to the circuit show to the right.
$$
\begin{eqnarray}
R_{23} &=& R_2 + R_3 = ~R_2~ + ~R_3~ = [[return sf_latex(R_23, 0)]] \Omega \\
\Rightarrow R_{ab} &=& (R_1^{-1} + R_{23}^{-1})^{-1} \\
&=& (~R_1~ ^{-1} + [[return sf_latex(R_23, 0)]] ^{-1})^{-1} \Omega \\
&=& [[return sf_latex(R_ab)]] \Omega
\end{eqnarray}
$$
$R_{bc}$
Current passing from $b$ to $c$.
For a current passing from $b$ to $c$:
$$
\begin{eqnarray}
R_{12} &=& R_1 + R_2 = ~R_1~ + ~R_2~ = [[return sf_latex(R_12, 0)]] \Omega \\
\Rightarrow R_{bc} &=& (R_3^{-1} + R_{12}^{-1})^{-1} \\
&=& (~R_3~ ^{-1} + [[return sf_latex(R_12, 0)]] ^{-1})^{-1} \Omega \\
&=& [[return sf_latex(R_bc)]] \Omega
\end{eqnarray}
$$
$R_{ac}$
Current passing from $a$ to $c$.
For a current passing from $a$ to $c$:
$$
\begin{eqnarray}
R_{13} &=& R_1 + R_3 = ~R_1~ + ~R_3~ = [[return sf_latex(R_13, 0)]] \Omega \\
\Rightarrow R_{ac} &=& (R_2^{-1} + R_{13}^{-1})^{-1} \\
&=& (~R_2~ ^{-1} + [[return sf_latex(R_13, 0)]] ^{-1})^{-1} \Omega \\
&=& [[return sf_latex(R_ac)]] \Omega
\end{eqnarray}
$$
$R_{ab} = $
return sf_math(R_ab)
5%
$\Omega$ $R_{bc} = $
return sf_math(R_bc)
5%
$\Omega$ $R_{ac} = $
return sf_math(R_ac)
5%
$\Omega$
current || resistance
Exercise - Wheatstone bridge
if (int_count_times_randomized == 0){
return 1;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 2;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 3;
} else {
return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 3;
} else {
return random_min_max_precision(1, 5, 0); //defined in setup_exercise_all.js
}
if (int_count_times_randomized == 0){
return 12;
} else {
return random_min_max_precision(6, 15, 0); //defined in setup_exercise_all.js
}
A Wheatstone bridge. The rectangular blocks represent resistors. The arrow on $R_2$ indicates its resistance is adjustable.
Rhdv, CC BY-SA 3.0 , via Wikimedia Commons
The figure shows a Wheatstone bridge, a setup with four resistors and one voltmeter in the middle that can be used to measure resistance to a high accuracy. $R_X$ is the unknown resistance to be measured, while the values of $R_1$ and $R_3$ are known. To find $R_X$, the value of $R_2$ is adjusted until the voltmeter shows $V_G=0V$.
Assume $V_G=0V$:
Write $\frac{R_X}{R_3}$ in terms of $R_1$ and $R_2$. (Symbolic manipulations, no online submission.)
Suppose voltemeter measures $V_G = \Delta V_{DB} = V_D - V_B \neq 0$. A typical voltmeter has high resistance, so we can assume $I_G \approx 0A$ (i.e. very little current flows through the voltmeter).
Apply Kirchhoff's loop rule twice to get two equations, one for $I_B R_3$, another for $I_B R_X$ in terms of $R_1$, $R_2$, $I_B$, and $V_G$. Do not substitute the numerical values. (Symbolic manipulations, no online submission.)
Find $I_D$ in terms of $R_1$, $R_2$, and $\cal E$ (emf of the battery). (Symbolic manipulations, no online submission.)
Combine the results above to find $\frac{R_X}{R_3}$ in terms of all other resistance, as well as $V_G$ and $\cal E$. There should be no current in your expression. (Symbolic manipulations, no online submission.)
If $I_G \approx 0A$, then the current flowing through $R_1$ and $R_2$ are the same, which we will call $I_D$. Similarly, the current through $R_3$ and $R_X$ are the same, which we will call $I_B$.