Exercise Gauss' Law

Exercise here can be loaded by html files

electricity || gauss_law

Exercise - Electric flux through a plane

if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(0.5, 10, 1, true); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(0.5, 10, 1, true); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 30; } else { return random_min_max_precision(0, 350, -1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 90; } else { return random_min_max_precision(0, 355, 0, true); //defined in setup_exercise_all.js }
return (true);
Side view of a plane in a uniform electric field. The area vector (not shown) is on the side of the plane that is darkened.
The figure shows the side view of a plane with an area of $ ~area~ m^2$ is placed inside an uniform electric field of $~field~ V/m$. There are two possible choices for the area vector, choose the one on the darkened side.
  1. Find the angle between the area vector and the field. Your answer should be between $0^\circ$ and $180^\circ$.
  2. Calculate the electric flux.
Hint:

The area vector is perpendicular to the plane.

namespace_gauss.angle_delta = Math.abs(difference_in_angle_normalized(~angle_area_vector~, ~angle_field~, false)); namespace_gauss.flux = ~area~ * ~field~ * Math.cos(namespace_gauss.angle_delta * Math.PI/180); if (Math.abs(namespace_gauss.flux)< 1e-6){ //> namespace_gauss.flux = 0; }

Solution

The area vector is shown.

First draw the area vector perpendicular to the plane, then the angle between $\vec A$ and $\vec B$ can be read off from the diagram to be: $$ \phi = [[return namespace_gauss.angle_delta]]^\circ $$

The electric flux is: $$ \begin{eqnarray} \Phi &=& E A \cos \phi \\ &=& (~field~ V/m)(~area~ m^2) \cos([[return namespace_gauss.angle_delta]]^\circ) \\ &=& [[return sf_latex(namespace_gauss.flux)]] Vm \end{eqnarray} $$

Angle $\phi= $
return sf_math(namespace_gauss.angle_delta)
return Math.abs(difference_in_angle_normalized(x_user, x_correct, false))<0.2 //>
$^\circ$
Electric flux $\Phi= $
return sf_math(namespace_gauss.flux)
5%
Select unit for electric flux:
$V$
$C/m$
$Vm$
$V/m$
2
electricity || gauss_law

Exercise - Gauss' law, charge enclosed, and electric flux

[[ namespace_gauss.epsilon = 8.854 * 1e-12; namespace_gauss.array_current = [~q_1~, ~q_2~, ~q_3~, ~q_4~, ~q_5~]; namespace_gauss.array_radius = [~r_1~, ~r_2~, ~r_3~, ~r_4~, ~r_5~]; namespace_gauss.array_index = []; namespace_gauss.q_enclosed = 0; namespace_gauss.array_radius.forEach((r, index)=>{ if (r< 100){ // > namespace_gauss.q_enclosed += namespace_gauss.array_current[index]; namespace_gauss.array_index.push(index); } }); namespace_gauss.flux = namespace_gauss.q_enclosed/namespace_gauss.epsilon; return ""; ]]
Charges in the vicinity of a Gaussian surface.
The figure shows a Gaussian surface.
  1. Find the charge enclosed $q_{enclosed}$.
  2. Find the total electric flux $\Phi$ through the surface.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
if (int_count_times_randomized == 0){ return 2; } else { let q = random_min_max_precision(-5, 5, 0); while (Math.abs(q)< 0.5){ //> q = random_min_max_precision(-5, 5, 0); } return q }
if (int_count_times_randomized == 0){ return 130; } else { let r = random_min_max_precision(20, 180, 0); while (Math.abs(r-100)< 20){ // > r = random_min_max_precision(20, 180, 0); } return r; }
if (int_count_times_randomized == 0){ return -1; } else { let q = random_min_max_precision(-5, 5, 0); while (Math.abs(q)< 0.5){ //> q = random_min_max_precision(-5, 5, 0); } return q; }
if (int_count_times_randomized == 0){ return 50; } else { let r = random_min_max_precision(20, 180, 0); while (Math.abs(r-100)< 20){ // > r = random_min_max_precision(20, 180, 0); } return r; }
if (int_count_times_randomized == 0){ return -3; } else { let q = random_min_max_precision(-5, 5, 0); while (Math.abs(q)< 0.5){ //> q = random_min_max_precision(-5, 5, 0); } return q; }
if (int_count_times_randomized == 0){ return 170; } else { let r = random_min_max_precision(20, 180, 0); while (Math.abs(r-100)< 20){ // > r = random_min_max_precision(20, 180, 0); } return r; }
if (int_count_times_randomized == 0){ return 5; } else { let q = random_min_max_precision(-5, 5, 0); while (Math.abs(q)< 0.5){ //> q = random_min_max_precision(-5, 5, 0); } return q; }
if (int_count_times_randomized == 0){ return 30; } else { let r = random_min_max_precision(20, 180, 0); while (Math.abs(r-100)< 20){ // > r = random_min_max_precision(20, 180, 0); } return r; }
if (int_count_times_randomized == 0){ return -2; } else { let q = random_min_max_precision(-5, 5, 0); while (Math.abs(q)< 0.5){ //> q = random_min_max_precision(-5, 5, 0); } return q; }
if (int_count_times_randomized == 0){ return 180; } else { let r = random_min_max_precision(20, 180, 0); while (Math.abs(r-100)< 20){ // > r = random_min_max_precision(20, 180, 0); } return r; }
if (int_count_times_randomized == 0){ return +1; } else { return random_min_max_precision(0*2*Math.PI/5, 1*2*Math.PI/5, 2); }
if (int_count_times_randomized == 0){ return +1.2; } else { return random_min_max_precision(1*2*Math.PI/5, 2*2*Math.PI/5, 2); }
if (int_count_times_randomized == 0){ return +2; } else { return random_min_max_precision(2*2*Math.PI/5, 3*2*Math.PI/5, 2); }
if (int_count_times_randomized == 0){ return +4; } else { return random_min_max_precision(3*2*Math.PI/5, 4*2*Math.PI/5, 2); }
if (int_count_times_randomized == 0){ return +5.6; } else { return random_min_max_precision(4*2*Math.PI/5, 5*2*Math.PI/5, 2); }

Solution

Showing only the charges enclosed.
Add up the charges inside the Gaussian surface gives $q_{enclosed} = [[return namespace_gauss.q_enclosed]]C$.

By Gauss' Law: $$ \Phi = \frac{q_{enclosed}}{\epsilon_0} = \frac{[[return namespace_gauss.q_enclosed]]C}{8.854\times 10^{-12}F/m} = [[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm $$ Note that the unit "Faraday" $F = C/V$, which you will learn in the chapter on capacitance.
$q_{enclosed} = $
return namespace_gauss.q_enclosed;
5%
$C$
$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2);
5%
Select unit for electric flux:
$V$
$V/m$
$Vm$
$N/C$
2
electricity || gauss_law || charge_density

Exercise - Linear charge density basic

A line of charge, uniformly distributed.
A wire of length $L$ has total charge $Q$ uniformly distributed along its length.
    Find:
  1. The linear charge density $\lambda$
  2. The amount of charge $q$ on a segement of the wire of length $l$.
if (int_count_times_randomized == 0){ return 14; } else { let Q = random_min_max_precision(-15, 15, 0); //defined in setup_exercise_all.js while (Math.abs(Q) < 0.2){ //> Q = random_min_max_precision(-15, 15, 0); } return Q }
if (int_count_times_randomized == 0){ return 7.00; } else { return random_min_max_precision(0.5, 10, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.4; } else { return random_min_max_precision(0.1, 0.9, 1); //defined in setup_exercise_all.js }
Hint:
  • $\lambda = \frac{Q}{L} = \frac{q}{l}$
  • $q = \lambda l$

Solution

Linear charge density: $$ \lambda = \frac{Q}{L} = \frac{~Q~ C}{~L~ m} = [[return (~Q~/~L~).toFixed(2)]] C/m $$
Charge in a segement: $$ q = \lambda l = ([[return (~Q~/~L~).toFixed(2)]] C/m)([[return (~L~ * ~fraction_l~).toFixed(1)]] m) = [[return (~Q~ * ~fraction_l~).toFixed(2)]] C $$
$\lambda = $
return (~Q~/~L~).toFixed(2)
5%

$q = $
return (~Q~ * ~fraction_l~).toFixed(2)
5%
$C$
Select unit for linear charge density $\lambda$:
$C$
$C/m$
$C/m^2$
$C/m^3$
1
electricity || gauss_law || charge_density

Exercise - Surface charge density basic

[[ namespace_gauss.charge_density = ~Q~/~L~/~L~; namespace_gauss.r = ~L~ * ~fraction_r~; namespace_gauss.a = Math.PI * namespace_gauss.r * namespace_gauss.r; namespace_gauss.charge_enclosed = namespace_gauss.charge_density * namespace_gauss.a; return ""; ]]
A sheet of charge, uniformly distributed.
A square of dimension $L \times L$ has total charge $Q$ uniformly distributed throughout.
    Find:
  1. The surface charge density $\sigma$
  2. The amount of charge $q$ on a circular region of radius $r$.
if (int_count_times_randomized == 0){ return 14; } else { let Q = random_min_max_precision(-15, 15, 0); //defined in setup_exercise_all.js while (Math.abs(Q) < 0.2){ //> Q = random_min_max_precision(-15, 15, 0); } return Q }
if (int_count_times_randomized == 0){ return 7.00; } else { return random_min_max_precision(0.5, 10, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.4; } else { return random_min_max_precision(0.1, 0.5, 1); //defined in setup_exercise_all.js }
Hint:
  • $\sigma = \frac{Q}{A} = \frac{q}{a}$
  • $q = \sigma a$

Solution

Surface charge density: $$ \sigma = \frac{Q}{A} = \frac{~Q~ C}{(~L~ m)^2} = [[return (namespace_gauss.charge_density).toFixed(2)]] C/m^2 $$
Area of the shaded circular region: $$ a = \pi r^2 = \pi ([[return (namespace_gauss.r).toFixed(2)]] m)^2 = [[return (namespace_gauss.a).toFixed(2)]] m^2 $$ Charge in the shaded circular region: $$ q = \sigma a = ([[return (namespace_gauss.charge_density).toFixed(2)]] C/m^2)([[return (namespace_gauss.a).toFixed(2)]] m^2) = [[return (namespace_gauss.charge_enclosed).toFixed(2)]] C $$
$\sigma = $
return (namespace_gauss.charge_density).toFixed(2)
5%

$q = $
return (namespace_gauss.charge_enclosed).toFixed(2)
5%
$C$
Select unit for surface charge density $\sigma$:
$C$
$C/m$
$C/m^2$
$C/m^3$
2
electricity || gauss_law || charge_density

Exercise - Volume charge density basic

[[ namespace_gauss.V = 4/3*Math.PI*~R~*~R~*~R~; namespace_gauss.charge_density = ~Q~/namespace_gauss.V; namespace_gauss.r = ~R~ * ~fraction_r~; namespace_gauss.v = 4/3*Math.PI * namespace_gauss.r * namespace_gauss.r * namespace_gauss.r; namespace_gauss.charge_enclosed = namespace_gauss.charge_density * namespace_gauss.v; if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~Q~; } return ""; ]]
A ball of charge, uniformly distributed.
Find the charge in the shaded region.
A ball of radius $R$ has total charge $Q$ uniformly distributed throughout.
    Find:
  1. The volume charge density $\rho$
  2. The amount of charge $q$ in a spherical region of radius $r$.
if (int_count_times_randomized == 0){ return 14; } else { let Q = random_min_max_precision(-15, 15, 0); //defined in setup_exercise_all.js while (Math.abs(Q) < 0.2){ //> Q = random_min_max_precision(-15, 15, 0); } return Q }
if (int_count_times_randomized == 0){ return 1.1; } else { return random_min_max_precision(0.8, 1.5, 2); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.5, 1.5, 1); //defined in setup_exercise_all.js }
Hint:
  • $v = \frac{4}{3}\pi r^3$: volume of a sphere of radius $r$.
  • $\rho = \frac{Q}{V} = \frac{q}{v}$.
  • $q = \rho v$ inside the ball.

Solution

Volume of the whole sphere: $$ V = \frac{4}{3}\pi R^3 = \frac{4}{3}\pi (~R~ m)^3 = [[return (namespace_gauss.V).toFixed(2)]] m^3 $$ Volume charge density: $$ \rho = \frac{Q}{V} = \frac{~Q~ C}{[[return (namespace_gauss.V).toFixed(2)]] m^3} = [[return (namespace_gauss.charge_density).toFixed(2)]] C/m^3 $$
$\rho = $
return (namespace_gauss.charge_density).toFixed(2)
5%

$q = $
return (namespace_gauss.charge_enclosed).toFixed(2)
5%
$C$
Select unit for volume charge density $\rho$:
$C$
$C/m$
$C/m^2$
$C/m^3$
3
electricity || gauss_law || charge_density

Exercise - Volume charge density of a shell

[[ namespace_gauss.a = (~R~ * ~fraction_R~).toFixed(2); namespace_gauss.V = 4/3*Math.PI*(~R~*~R~*~R~ - namespace_gauss.a*namespace_gauss.a*namespace_gauss.a); namespace_gauss.charge_density = ~Q~/namespace_gauss.V; namespace_gauss.r = (~R~ * ~fraction_r~).toFixed(2); namespace_gauss.v = 4/3*Math.PI * (namespace_gauss.r * namespace_gauss.r * namespace_gauss.r - namespace_gauss.a*namespace_gauss.a*namespace_gauss.a); if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~Q~; } else if (~fraction_R~ >= ~fraction_r~){ namespace_gauss.charge_enclosed = 0; } else { namespace_gauss.charge_enclosed = namespace_gauss.charge_density * namespace_gauss.v; } return ""; ]]
A spherical shell of charge, uniformly distributed.
Find the charge in the shaded region.
A shell of inner radius $a$ and outer radius $b$ has total charge $Q$ uniformly distributed throughout.
    Find:
  1. The volume charge density $\rho$ within the shell.
  2. The amount of charge $q$ in a spherical region of radius $r$.
if (int_count_times_randomized == 0){ return 14; } else { let Q = random_min_max_precision(-15, 15, 0); //defined in setup_exercise_all.js while (Math.abs(Q) < 0.2){ //> Q = random_min_max_precision(-15, 15, 0); } return Q }
if (int_count_times_randomized == 0){ return 1.1; } else { return random_min_max_precision(0.8, 1.5, 2); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.3, 1.2, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.5; } else { return random_min_max_precision(0.5, 0.8, 2); //defined in setup_exercise_all.js }
Hint:
  • Account for the absence of charge in the cavity.
  • $v_{sphere} = \frac{4}{3}\pi r^3$: volume of a sphere
  • $\rho = \frac{Q}{V} = \frac{q}{v}$: but true only for within the shell that carries electric charge.
  • $q = \rho v$: where $v$ is the volume that overlaps with the shell.

Solution

Volume of the whole shell: $$ \begin{eqnarray} V &=& \frac{4}{3}\pi b^3 - \frac{4}{3}\pi a^3 = \frac{4}{3}\pi (b^3 - a^3) \\ &=& \frac{4}{3}\pi ((~R~ m)^3 - ([[return namespace_gauss.a]] m)^3) \\ &=& [[return (namespace_gauss.V).toFixed(2)]] m^3 \end{eqnarray} $$ Volume charge density: $$ \rho = \frac{Q}{V} = \frac{~Q~ C}{[[return (namespace_gauss.V).toFixed(2)]] m^3} = [[return (namespace_gauss.charge_density).toFixed(2)]] C/m^3 $$
$\rho = $
return (namespace_gauss.charge_density).toFixed(2)
5%

$q = $
return (namespace_gauss.charge_enclosed).toFixed(2)
5%
$C$
Select unit for volume charge density $\rho$:
$C$
$C/m$
$C/m^2$
$C/m^3$
3
electricity || gauss_law || charge_density

Exercise - Electric flux of a shell and a charge

[[ namespace_gauss.a = (~R~ * ~fraction_R~).toFixed(2); namespace_gauss.V = 4/3*Math.PI*(~R~*~R~*~R~ - namespace_gauss.a*namespace_gauss.a*namespace_gauss.a); namespace_gauss.charge_density = ~Q~/namespace_gauss.V; namespace_gauss.r = (~R~ * ~fraction_r~).toFixed(2); namespace_gauss.v = 4/3*Math.PI * (namespace_gauss.r * namespace_gauss.r * namespace_gauss.r - namespace_gauss.a*namespace_gauss.a*namespace_gauss.a); if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~Q~ + ~q_0~; } else if (~fraction_R~ >= ~fraction_r~){ namespace_gauss.charge_enclosed = 0 + ~q_0~; } else { namespace_gauss.charge_enclosed = namespace_gauss.charge_density * namespace_gauss.v + ~q_0~; } namespace_gauss.flux = namespace_gauss.charge_enclosed/(8.854e-12); return ""; ]]
A spherical shell of charge, uniformly distributed.
Find the charge in the shaded region.
A shell of inner radius $a$ outer radius $b$ has total charge $Q$ uniformly distributed throughout. At the center lies a charge $q_0$.
    Find:
  1. The volume charge density $\rho$ within the shell.
  2. The amount of charge $q$ inside a spherical Gaussian surface of radius $r$.
  3. The total electric flux through the Gaussian surface.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
if (int_count_times_randomized == 0){ return 14; } else { let Q = random_min_max_precision(-15, 15, 0); //defined in setup_exercise_all.js while (Math.abs(Q) < 0.2){ //> Q = random_min_max_precision(-15, 15, 0); } return Q }
if (int_count_times_randomized == 0){ return 1.1; } else { return random_min_max_precision(0.8, 1.5, 2); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.3, 1.2, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.5; } else { return random_min_max_precision(0.5, 0.8, 2); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return -10; } else { let Q = random_min_max_precision(-15, 15, 0); //defined in setup_exercise_all.js while (Math.abs(Q) < 0.2){ //> Q = random_min_max_precision(-15, 15, 0); } return Q }
Hint:
  • Account for the absence of charge in the cavity.
  • $v_{sphere} = \frac{4}{3}\pi r^3$: volume of a sphere
  • $\rho = \frac{Q}{V} = \frac{q}{v}$: but true only for within the shell that carries electric charge.
  • $q = \rho v$: where $v$ is the volume that overlaps with the shell.

Solution

Volume of the whole shell: $$ \begin{eqnarray} V &=& \frac{4}{3}\pi b^3 - \frac{4}{3}\pi a^3 = \frac{4}{3}\pi (b^3 - a^3) \\ &=& \frac{4}{3}\pi ((~R~ m)^3 - ([[return namespace_gauss.a]] m)^3) \\ &=& [[return (namespace_gauss.V).toFixed(2)]] m^3 \end{eqnarray} $$ Volume charge density in the shell: $$ \rho = \frac{Q}{V} = \frac{~Q~ C}{[[return (namespace_gauss.V).toFixed(2)]] m^3} = [[return (namespace_gauss.charge_density).toFixed(2)]] C/m^3 $$
The flux can be found simply with Gauss' law: $$ \Phi = \frac{q_{enclosed}}{\epsilon_0} = \frac{[[return (namespace_gauss.charge_enclosed).toFixed(2)]]C}{8.854\times 10^{-12}F/m} = [[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm $$ Note that the unit "Faraday" $F = C/V$, which you will learn in the chapter on capacitance.
$\rho = $
return (namespace_gauss.charge_density).toFixed(2)
5%

$q = $
return (namespace_gauss.charge_enclosed).toFixed(2)
5%
$C$
$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2);
5%
Select unit for volume charge density $\rho$:
$C$
$C/m$
$C/m^2$
$C/m^3$
3
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
electricity || gauss_law

Exercise - E field of a point charge from Gauss' law

if (int_count_times_randomized == 0){ return 14; } else { return random_min_max_precision(-15, 15, 0, false, -0.2, 0.2); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1.1; } else { return random_min_max_precision(0.8, 1.5, 2); //defined in setup_exercise_all.js }
return (true);
An observer at distance $r$ from a point charge.
An observer is at distance $r$ away from a point charge $Q$.
  1. Find the total flux $\Phi$ of a spherical Gaussian surface containing the charge.
  2. Use Gauss' law to find the radial component of the electric field $E_r$ at his location.


Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint:
  • $\Phi = \frac{q_{enclosed}}{\epsilon_0}$.
  • If the Gaussian surface is chosen symmetrically, $\Phi = E_r A$, where $A$ is the area of the Gaussian surface.
namespace_gauss.flux = ~Q~ * 1e-9 /8.854e-12; namespace_gauss.area = 4*Math.PI* ~r~ * ~r~; namespace_gauss.e_field = namespace_gauss.flux / namespace_gauss.area;

Solution

A spherical Gaussian surfrace surrounding a point charge.
By Gauss' law: $$ \Phi = \frac{q_{enclosed}}{\epsilon_0} = \frac{~Q~ nC}{8.854\times 10^{-12}F/m} = [[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm $$ Since it is spherically symmetric, we know the flux is $\Phi = E_r A$. We just calculated the flux from Gauss' law, so we can find the field: From $E = \frac{|\Phi|}{A} = \frac{|\Phi|}{4\pi r^2}$, substituting in the value for $\Phi$: $$ \begin{eqnarray} \Phi &=& E_r A = E_r (4\pi r^2) \\ \Rightarrow E_r &=& \frac{\Phi}{4\pi r^2} \\ &=& \frac{[[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm}{4 \pi (~r~ m)^2} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.e_field, 2)]] V/m \end{eqnarray} $$

Symbolically, $\Phi = E_rA=E_r(4\pi r^2)$, and $q_{enclosed} = Q$. Put both into Gauss' law: $$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ \Rightarrow E_r (4\pi r^2) &=& \frac{Q}{\epsilon_0} \\ \Rightarrow E_r &=& \frac{Q}{4\pi \epsilon_0 r^2} \end{eqnarray} $$

$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density

Exercise - E field of a line of charge

A cylindrical Gaussian surface around a line of charge.
A long wire carries a uniform linear charge density $\lambda$. A cylindrical Gaussian surface of length $l$ and radius $r$ is shown surrounding part of the wire.
    Find:
  1. The charge enclosed ($q_{enclosed}$) by the Gaussian cylinder.
  2. The total electric flux ($\Phi_{total}$) of the whole Gaussian cylinder.
  3. The electric flux ($\Phi_{left}$, $\Phi_{right}$) through the two circular caps of the Gaussian cylinder.
  4. The electric flux ($\Phi_{curved}$) through the curved side of the Gaussian cylinder.
  5. The the (cylindrically) radial component electric field $E_r$ at distance $r$ from the wire.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
if (int_count_times_randomized == 0){ return 2; } else { let lambda = 0; while (Math.abs(lambda) < 0.2){ //> lambda = random_min_max_precision(-3, 3, 1); } return lambda }
if (int_count_times_randomized == 0){ return 1.8; } else { return random_min_max_precision(0.7, 1.8, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1.5, 5, 1); //defined in setup_exercise_all.js }
return (true);
Hint:
  • Electric field is radially, so does not pass through all three surfaces of the Gaussian cylinder.
  • $q_{enclosed} = \lambda l$.
  • $\Phi_{total} = \frac{q_{enclosed}}{\epsilon_0} $.
namespace_gauss.charge_enclosed = ~lambda~ * 1e-9 * ~l~; namespace_gauss.flux = namespace_gauss.charge_enclosed/(8.854e-12); namespace_gauss.area = 2*Math.PI*~r~ * ~l~; namespace_gauss.e_field = namespace_gauss.flux/namespace_gauss.area;

Solution

Charge in a segement: $$ q = \lambda l = ( ~lambda~ nC/m)( ~l~ m) = [[return get_scientific_notation_latex(namespace_gauss.charge_enclosed * 1e9, 2)]] nC $$
$$ \begin{eqnarray} \Phi_{total} &=& \frac{q_{enclosed}}{\epsilon_0} \\ &=& \frac{[[return get_scientific_notation_latex(namespace_gauss.charge_enclosed * 1e9, 2)]] \times 10^{-9}C}{8.854\times 10^{-12}F/m} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm \end{eqnarray} $$
Radial electric field (drawn for positive $\lambda$)
Electric field is radial, so none passes through the two caps of the cylinder: $$ \Phi_{left} = \Phi_{right} = 0Vm $$ The cylinder consists of three parts, namely the two caps and the curved surface, therefore: $$ \begin{eqnarray} \Phi_{total} &=& \Phi_{left} + \Phi_{right} + \Phi_{curved} = 0 + 0 + \Phi_{curved} \\ \Rightarrow \Phi_{curved} &=& \Phi_{total} = [[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm \end{eqnarray} $$ On the curved surface, $d\vec A = dA \hat r$, where $\hat r$ is the cylindrically radial unit vector. Using the same argment as the spherically symmetric case, we can show $\Phi = E_r dA$: $$ \begin{eqnarray} \Phi_{curved} &=& \int_{curved} \vec E \cdot d\vec A \\ &=& \int_{curved} \vec E \cdot (dA \hat r) \\ &=& \int_{curved} (\vec E \cdot \hat r) dA \\ &=& \int_{curved} E_r dA & \text{ where $E_r=E \cdot \hat r$ is the cylindrically radial component of the E field}\\ &=& E_r A_{curved} \end{eqnarray} $$ The area of the curved surface is: $$ A_{curved} = 2\pi r l = (2\pi) (~r~ m) (~l~ m) = [[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2 $$ Calculating $E$: $$ \begin{eqnarray} E_r A_{curved} &=& \Phi_{curved} \\ \Rightarrow E_r &=& \frac{\Phi_{curved}}{A_{curved}} = \frac{[[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm}{[[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.e_field, 2)]] V/m \end{eqnarray} $$

Symbolically, $\Phi = \Phi_{left} + \Phi_{right} + \Phi_{curved} = 0 + 0 + \Phi_{curved} = EA_{curved} = E_r (2\pi r l)$ and $q_{enclosed} = \lambda l$.

Put both into Gauss' law: $$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ \Rightarrow E_r (2\pi r l) &=& \frac{\lambda l}{\epsilon_0} \\ \Rightarrow E_r &=& \frac{\lambda}{2\pi \epsilon_0 r} \end{eqnarray} $$ You can see from the calculation that $E_r$ does not depend on $l$. Although we used $l = ~l~ m$, $l$ appears once in the numerator (in $q_{enclosed} = \lambda l$) and once in the denominatior (in $A_{curved} = 2\pi r l$), so it cancels out in $E$.

$q_{enclosed} = $
return get_scientific_notation_math(namespace_gauss.charge_enclosed * 1e9, 2)
5%
$nC$
$\Phi_{total} = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$\Phi_{left} = $
return 0
5%
, $\Phi_{right} = $
return 0
5%

$\Phi_{curved} = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density

Exercise - E field of a sheet of charge

if (int_count_times_randomized == 0){ return 14; } else { let Q = random_min_max_precision(-15, 15, 0); //defined in setup_exercise_all.js while (Math.abs(Q) < 0.2){ //> Q = random_min_max_precision(-15, 15, 0); } return Q }
return 10
if (int_count_times_randomized == 0){ return 0.4; } else { return random_min_max_precision(0.1, 0.5, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(2, 5, 0); //defined in setup_exercise_all.js }
return (true);
A sheet of charge, uniformly distributed.
A Gaussian cylinder extending the same distance $z$ above and below the sheet.
An observer is at distance $z$ away from an infinite sheet of charge with uniform surface charge density $\sigma$.
    Consider a cylindrical Gaussian surface of radius $r$ and height $2z$ centered around the sheet:
  1. Find the charge enclosed ($q_{enclosed}$).
  2. The total electric flux ($\Phi_{total}$) of the whole Gaussian cylinder.
  3. The electric flux ($\Phi_{top}$, $\Phi_{bottom}$) through the two circular caps.
  4. The electric flux ($\Phi_{curved}$) through the curved side.
  5. Use Gauss' law to find the $z$-component (i.e. vertical component) of the electric field $E_z$ at the observer's location above the sheet.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint:
  • Not all surfaces on the Gaussian cylinder contributes to the flux.
  • $q = \sigma a$
  • $\Phi = \frac{q_{enclosed}}{\epsilon_0}$
namespace_gauss.charge_density = Number(sf_math(~Q~/(~L~ * ~L~))); //In nC/m^2 namespace_gauss.r = Number(( ~L~ * ~fraction_r~).toFixed(2)); //In m namespace_gauss.area_cap = Math.PI * namespace_gauss.r * namespace_gauss.r; namespace_gauss.charge_enclosed = namespace_gauss.charge_density * namespace_gauss.area_cap; //In nC namespace_gauss.flux = namespace_gauss.charge_enclosed * 1e-9 / 8.854e-12; namespace_gauss.area = 2*namespace_gauss.area_cap; namespace_gauss.e_field = namespace_gauss.flux/ namespace_gauss.area;

Solution

Electric field (drawn for positive $\sigma$) only pierces through the two caps, not the curved surface.
The Gaussian cylinder consists of three surfaces:
  • Top and bottom caps, each of area $A_{cap} = \pi r^2$.
  • Curved side, area $A_{curved} = 2\pi r \times (2z)$. Not needed below.
Area of the sheet enclosed by the Gaussian surface is just $A_{cap}$: $$ A_{cap} = \pi r^2 = \pi ([[return namespace_gauss.r]] m)^2 = [[return sf_latex(namespace_gauss.area_cap)]] m^2; $$ Charge in the shaded circular region: $$ q_{enclosed} = \sigma A_{cap} = ([[return (namespace_gauss.charge_density).toFixed(2)]] nC/m^2)([[return sf_latex(namespace_gauss.area_cap)]] m^2) = [[return (namespace_gauss.charge_enclosed).toFixed(2)]] nC $$
$$ \begin{eqnarray} \Phi_{total} &=& \frac{q_{enclosed}}{\epsilon_0} \\ &=& \frac{[[return get_scientific_notation_latex(namespace_gauss.charge_enclosed, 2)]] \times 10^{-9}C}{8.854\times 10^{-12}F/m} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm \end{eqnarray} $$
The electric field is vertical for an infinite sheet of charge. Therefore the field does not pierce through the curved side of the Gaussian cylinder: $$ \Phi_{curved} = 0 $$ By symmetry, $\Phi_{top} = \Phi_{bottom}$ (which we will call $\Phi_{cap}$ below), therefore: $$ \begin{eqnarray} \Phi_{total} &=& \Phi_{top} + \Phi_{bottom} + \Phi_{curved} = 2\Phi_{cap} \\ \Rightarrow \Phi_{cap} &=& \frac{1}{2} \Phi_{total} = \frac{[[return sf_latex(namespace_gauss.flux)]] Vm}{2} \\ &=& [[return sf_latex(namespace_gauss.flux/2, 2)]] Vm \end{eqnarray} $$
First focus on the top cap, we can show $\Phi_{top} = E_z A$, where $E_z$ is the $z$-component of the E field (perpendicular to the sheet) at the location of the observer. $$ \begin{eqnarray} \Phi_{top} &=& \int_{top} \vec E \cdot d\vec A \\ &=& \int_{top} \vec E \cdot (dA \hat k) \\ &=& \int_{top} (\vec E \cdot \hat k) dA \\ &=& \int_{top} E_z dA \\ &=& E_z \int_{top} dA \\ &=& E_z A_{cap} \end{eqnarray} $$ Therefore the total flux is: $$ \begin{eqnarray} \Phi_{total} &=& \Phi_{top} + \Phi_{bottom} \\ &=& 2 \Phi_{top}\\ &=& 2 E_z A_{cap} \end{eqnarray} $$ Solving for $E_z$: $$ \begin{eqnarray} \Rightarrow E_z &=& \frac{\Phi_{total}}{2 A_{cap}} \\ &=& \frac{[[return sf_latex(namespace_gauss.flux)]] Vm}{2([[return sf_latex(namespace_gauss.area_cap, 2)]] m^2)} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.e_field, 2)]] V/m \end{eqnarray} $$
$q_{enclosed} = $
return sf_math(namespace_gauss.charge_enclosed)
5%
$nC$
$\Phi_{total} = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$\Phi_{top} = $
return get_scientific_notation_math(namespace_gauss.flux/2, 2)
5%
, $\Phi_{bottom} = $
return get_scientific_notation_math(namespace_gauss.flux/2, 2)
5%

$\Phi_{curved} = $
return 0
5%

$E_z = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density

Exercise - E field of two sheets of charge

if (int_count_times_randomized == 0){ return -0.01; } else { return random_min_max_precision(-0.01, 0.01, 3, false, -0.004, +0.004); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return +0.01; } else { return random_min_max_precision(-0.01, 0.01, 3, false, -0.004, +0.004); //defined in setup_exercise_all.js }
return (true);
Two large sheets of charge with uniform charge density.

Two large sheets with charge density $\sigma_1 = ~density_1~ nC/m^2$ and $\sigma_2 = ~density_2~ nC/m^2$ are placed one above the other.

You may use the equation of the $z$-component of the E field from a large sheet derived earlier. Use the sign to denote the direction of the field (up: $+$, down: $-$).

First consider only sheet 1 (i.e. ignoring sheet 2).

  1. What is $E_{1, above}$, the E field in the region above the sheet?
  2. What is $E_{1, below}$, the E field in the region below the sheet?

Next consider only sheet 2 (i.e. ignoring sheet 1).

  1. What is $E_{2, above}$, the E field in the region above the sheet?
  2. What is $E_{2, below}$, the E field in the region below the sheet?

Now consider both sheets together, sheet 1 above sheet 2.

  1. What is $E_{12, above}$, the E field in the region above both sheets?
  2. What is $E_{12, middle}$, the E field in the region between the sheets?
  3. What is $E_{12, below}$, the E field in the region below both sheets?

Hint:
  • $E =\frac{\sigma}{2 \epsilon_0}$ for a single sheet.
  • Combine the fields from the two sheets to get the total field.
namespace_gauss.field_1 = ~density_1~ *1e-9 / 2 / 8.854e-12; namespace_gauss.field_2 = ~density_2~ *1e-9 / 2 / 8.854e-12; namespace_gauss.field_above_1 = +namespace_gauss.field_1; namespace_gauss.field_below_1 = -namespace_gauss.field_1; namespace_gauss.field_above_2 = +namespace_gauss.field_2; namespace_gauss.field_below_2 = -namespace_gauss.field_2; namespace_gauss.field_above_total = namespace_gauss.field_above_1 + namespace_gauss.field_above_2; namespace_gauss.field_middle_total = namespace_gauss.field_below_1 + namespace_gauss.field_above_2; namespace_gauss.field_below_total = namespace_gauss.field_below_1 + namespace_gauss.field_below_2;

Solution

The yellow arrows denote the E field of sheet 1, the green arrows that of sheet 2.

The magnitude of the field produced by a sheet of charge is given by $|\vec E|=\frac{|\sigma|}{\epsilon_0}$. The direction can be deduced by the direction of the arrows in the figure (field goes away from positive charges but toward negative charges).

Sheet 1

$$ \begin{eqnarray} E_{1, above} &=& \pm \frac{|\sigma_1|}{2\epsilon_0} \\ &=& \frac{~density_1~ \times 10^{-9}}{2(8.854\times 10^{-12})} \\ &=& [[return sf_latex(namespace_gauss.field_above_1)]] V/m \end{eqnarray} $$ The sign is chosen based on the direction of the yellow arrow above sheet 1.

$$ \begin{eqnarray} E_{1, below} &=& \pm \frac{|\sigma_1|}{2\epsilon_0} \\ &=& \frac{[[return (-1*~density_1~.toFixed(3))]] \times 10^{-9}}{2(8.854\times 10^{-12})} \\ &=& [[return sf_latex(namespace_gauss.field_below_1)]] V/m \end{eqnarray} $$ The sign is chosen based on the direction of the yellow arrow below sheet 1.

Sheet 2

$$ \begin{eqnarray} E_{2, above} &=& \pm \frac{|\sigma_2|}{2\epsilon_0} \\ &=& \frac{~density_2~ \times 10^{-9}}{2(8.854\times 10^{-12})} \\ &=& [[return sf_latex(namespace_gauss.field_above_2)]] V/m \end{eqnarray} $$ The sign is chosen based on the direction of the green arrow above sheet 2.

$$ \begin{eqnarray} E_{2, below} &=& \pm \frac{|\sigma_2|}{2\epsilon_0} \\ &=& \frac{[[return (-1*~density_2~.toFixed(3))]] \times 10^{-9}}{2(8.854\times 10^{-12})} \\ &=& [[return sf_latex(namespace_gauss.field_below_2)]] V/m \end{eqnarray} $$ The sign is chosen based on the direction of the green arrow below sheet 2.

Both sheets

A position above sheet 1 is also above sheet 2, so we have: $$ \begin{eqnarray} E_{12, above} &=& E_{1, above} + E_{2, above} \\ &=& ([[return sf_latex(namespace_gauss.field_above_1)]] V/m) + ([[return sf_latex(namespace_gauss.field_above_2)]] V/m) \\ &=& [[return sf_latex(namespace_gauss.field_above_total)]] V/m \end{eqnarray} $$

A position in the middle is below sheet 1 but above sheet 2, so we have: $$ \begin{eqnarray} E_{12, middle} &=& E_{1, below} + E_{2, above} \\ &=& ([[return sf_latex(namespace_gauss.field_below_1)]] V/m) + ([[return sf_latex(namespace_gauss.field_above_2)]] V/m) \\ &=& [[return sf_latex(namespace_gauss.field_middle_total)]] V/m \end{eqnarray} $$

A position below sheet 2 is also below sheet 1, so we have: $$ \begin{eqnarray} E_{12, below} &=& E_{1, below} + E_{2, below} \\ &=& ([[return sf_latex(namespace_gauss.field_below_1)]] V/m) + ([[return sf_latex(namespace_gauss.field_below_2)]] V/m) \\ &=& [[return sf_latex(namespace_gauss.field_below_total)]] V/m \end{eqnarray} $$

$E_{1, above}= $
return sf_math(namespace_gauss.field_above_1)
5%

$E_{1, below}= $
return sf_math(namespace_gauss.field_below_1)
5%

$E_{2, above}= $
return sf_math(namespace_gauss.field_above_2)
5%

$E_{2, below}= $
return sf_math(namespace_gauss.field_below_2)
5%

$E_{12, above}= $
return sf_math(namespace_gauss.field_above_total)
5%

$E_{12, middle}= $
return sf_math(namespace_gauss.field_middle_total)
5%

$E_{12, below}= $
return sf_math(namespace_gauss.field_below_total)
5%
Select unit for electric field:
$C$
$NC$
$V$
$V/m$
3
electricity || gauss_law || charge_density

Exercise - E field of a ball of charge

if (int_count_times_randomized == 0){ return 0.004; } else { let Q = 0; while (Math.abs(Q) < 0.002){ //> Q = random_min_max_precision(-0.005, +0.005, 4); } return Q }
return 10;
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.5, 1.5, 1); //defined in setup_exercise_all.js }
return (true);
A ball of charge, uniformly distributed.
A spherical Gaussian surface.
An observer is at distance $r$ away from the center of a ball of charge with uniform volume charge density $\rho$ and radius $R$.
    Consider a spherical Gaussian surface of radius $r$ centered around the ball:
  1. Find the charge enclosed ($q_{enclosed}$).
  2. Find the total flux $\Phi$.
  3. Use Gauss' law to find the radial component of the electric field $E_r$ at the observer's location.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint:
  • $v = \frac{4}{3}\pi r^3$: volume of a sphere of radius $r$.
  • $q = \rho v$ inside the ball.
  • $\Phi = \frac{q_{enclosed}}{\epsilon_0}$
namespace_gauss.V = 4/3*Math.PI*~R~*~R~*~R~ * 1e-6; namespace_gauss.charge_density = Number(get_scientific_notation_math(~Q~/namespace_gauss.V, 2)); //In nC/m^3 namespace_gauss.r = Number(( ~R~ * ~fraction_r~).toFixed(2)); //In cm namespace_gauss.v = 4/3*Math.PI * namespace_gauss.r * namespace_gauss.r * namespace_gauss.r * 1e-6; if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = namespace_gauss.charge_density * namespace_gauss.V; //In nC } else { namespace_gauss.charge_enclosed = namespace_gauss.charge_density * namespace_gauss.v; //In nC } namespace_gauss.flux = namespace_gauss.charge_enclosed * 1e-9 / 8.854e-12; namespace_gauss.area = 4*Math.PI * namespace_gauss.r * namespace_gauss.r * 1e-4; namespace_gauss.e_field = namespace_gauss.flux/ namespace_gauss.area;

Solution

Electric field strength as a function of $r$. Postive value represents field radially outward, negative represents radially inward.
$$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ &=& \frac{[[return get_scientific_notation_latex(namespace_gauss.charge_enclosed, 2)]] \times 10^{-9}C}{8.854\times 10^{-12}F/m} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm \end{eqnarray} $$
The problem is spherically symmetric, so the flux is given by $\Phi = E_r A$. The area of the Gaussian surface is: $$ A = 4\pi r^2 = (4\pi) ([[return namespace_gauss.r]] \times 10^{-2} m)^2 = [[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2 $$ Calculating $E_r$: $$ \begin{eqnarray} E_r &=& \frac{\Phi}{A} = \frac{[[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm}{[[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.e_field, 2)]] V/m \end{eqnarray} $$
$q_{enclosed} = $
return sf_math(namespace_gauss.charge_enclosed)
5%
$nC$
$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density

Exercise - E field of a thin shell of charge

if (int_count_times_randomized == 0){ return 0.004; } else { return random_min_max_precision(-0.005, +0.005, 4, false, -0.002, 0.002); }
return 10;
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.5, 1.5, 1, false, 0.0095, 1.0005); //defined in setup_exercise_all.js }
return (true);
A thin shell of charge, uniformly distributed.
A spherical Gaussian surface.
An observer is at distance $r$ away from the center of a thin shell of charge (of negligible thickness) with total charge $Q$ and radius $R$.
    Consider a spherical Gaussian surface of radius $r$:
  1. Find the charge enclosed ($q_{enclosed}$).
  2. Find the total flux $\Phi$.
  3. Use Gauss' law to find the radial component of the electric field $E_r$ at the observer's location.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint:
  • $q_{enclosed} = 0$ whenever the Gaussian surface is smaller than the shell.
  • $\Phi = \frac{q_{enclosed}}{\epsilon_0}$
namespace_gauss.r = Number(( ~R~ * ~fraction_r~).toFixed(2)); //In cm namespace_gauss.area = 4*Math.PI * namespace_gauss.r * namespace_gauss.r * 1e-4; if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~Q~; //In nC namespace_gauss.flux = namespace_gauss.charge_enclosed * 1e-9 / 8.854e-12; namespace_gauss.e_field = namespace_gauss.flux/ namespace_gauss.area; } else { namespace_gauss.charge_enclosed = 0; //In nC namespace_gauss.flux = 0; namespace_gauss.e_field = 0; }

Solution

Electric field strength as a function of $r$. Postive value represents field radially outward, negative represents radially inward.
$q_{enclosed} = $
return sf_math(namespace_gauss.charge_enclosed)
5%
$nC$
$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density

Exercise - E field of a conducting sphere

if (int_count_times_randomized == 0){ return 0.004; } else { let Q = 0; while (Math.abs(Q) < 0.002){ //> Q = random_min_max_precision(-0.005, +0.005, 4); } return Q }
return 10;
if (int_count_times_randomized == 0){ return 0.8; } else { let fraction_r = 1; while (Math.abs(fraction_r - 1) < 0.001){ //> fraction_r = random_min_max_precision(0.5, 1.5, 1); //defined in setup_exercise_all.js } return fraction_r; }
return (true);
A solid conducting sphere carray charge $Q = ~Q~ nC$. Charges not shown in figure.
A spherical Gaussian surface. Charges not shown in figure.
An observer is at distance $r$ away from the center of a solid conducting sphere with total charge $Q$ and radius $R$.
    Consider a spherical Gaussian surface of radius $r$:
  1. Find the charge enclosed ($q_{enclosed}$).
  2. Find the total flux $\Phi$.
  3. Use Gauss' law to find the radial component of the electric field $E_r$ at the observer's location.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint:
  • Charges are only on the surface of the sphere. No charges in the interior.
  • $q_{enclosed} = 0$ whenever the Gaussian surface is inside the sphere.
  • $\Phi = \frac{q_{enclosed}}{\epsilon_0}$
namespace_gauss.r = Number(( ~R~ * ~fraction_r~).toFixed(2)); //In cm namespace_gauss.area = 4*Math.PI * namespace_gauss.r * namespace_gauss.r * 1e-4; if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~Q~; //In nC namespace_gauss.flux = namespace_gauss.charge_enclosed * 1e-9 / 8.854e-12; namespace_gauss.e_field = namespace_gauss.flux/ namespace_gauss.area; } else { namespace_gauss.charge_enclosed = 0; //In nC namespace_gauss.flux = 0; namespace_gauss.e_field = 0; }

Solution

A spherical Gaussian surface.
Electric field strength as a function of $r$. Postive value represents field radially outward, negative represents radially inward.
A few important points:
  • Charges are free to move in a conductor (such as metal).
  • Due to their mutual repulsion, charges will all rush to the surface of the sphere.
  • In the volume of the sphere, there is no charge at all. All charges are found on a very thin layer on the surface.
  • This problem is the same as the one of a thin spherical shell of charge.
  • Do not use uniform charge density $\rho$ to do this problem because the density is zero except on the surface of the conducting sphere.
$q_{enclosed} = $
return sf_math(namespace_gauss.charge_enclosed)
5%
$nC$
$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density

Exercise - E field of a thin shell plus a point charge

if (int_count_times_randomized == 0){ return 0.004; } else { return random_min_max_precision(-0.005, +0.005, 4, false, -0.002, 0.002); }
return 10;
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.5, 1.5, 1, false, 0.0095, 1.0005); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return -0.002; } else { return random_min_max_precision(-0.002, +0.002, 4, false, -0.0008, 0.0008); }
return (true);
A thin shell of charge, uniformly distributed.
A spherical Gaussian surface.
An observer is at distance $r$ away from the center of a thin shell of charge (of negligible thickness) with total charge $Q$ and radius $R$. At the center is a point charge $q_0$.
    Consider a spherical Gaussian surface of radius $r$:
  1. Find the charge enclosed ($q_{enclosed}$).
  2. Find the total flux $\Phi$.
  3. Use Gauss' law to find the radial component of the electric field $E_r$ at the observer's location.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
Hint:
  • $q_{enclosed} = q_0$ whenever the Gaussian surface is smaller than the shell.
  • $q_{enclosed} = Q + q_0$ whenever the Gaussian surface is bigger than the shell.
  • $\Phi = \frac{q_{enclosed}}{\epsilon_0}$
namespace_gauss.r = Number(( ~R~ * ~fraction_r~).toFixed(2)); //In cm namespace_gauss.area = 4*Math.PI * namespace_gauss.r * namespace_gauss.r * 1e-4; if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~Q~ + ~q_0~; //In nC } else { namespace_gauss.charge_enclosed = ~q_0~; //In nC } namespace_gauss.flux = namespace_gauss.charge_enclosed * 1e-9 / 8.854e-12; namespace_gauss.e_field = namespace_gauss.flux/ namespace_gauss.area;

Solution

Electric field strength as a function of $r$. Postive value represents field radially outward, negative represents radially inward.
$$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ &=& \frac{[[return get_scientific_notation_latex(namespace_gauss.charge_enclosed, 2)]] \times 10^{-9}C}{8.854\times 10^{-12}F/m} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm \end{eqnarray} $$
The problem is spherically symmetric, so the flux is given by $\Phi = E_r A$. The area of the Gaussian surface is: $$ A = 4\pi r^2 = (4\pi) ([[return namespace_gauss.r]] \times 10^{-2} m)^2 = [[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2 $$ Calculating $E$: $$ \begin{eqnarray} E_r &=& \frac{\Phi}{A} = \frac{[[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm}{[[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.e_field, 2)]] V/m \end{eqnarray} $$
$q_{enclosed} = $
return sf_math(namespace_gauss.charge_enclosed)
5%
$nC$
$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density

Exercise - E field of a thick shell

if (int_count_times_randomized == 0){ return 0.004; } else { let Q = 0; while (Math.abs(Q) < 0.002){ //> Q = random_min_max_precision(-0.005, +0.005, 4); } return Q }
return 10;
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.5, 1.2, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.5; } else { return random_min_max_precision(0.5, 0.8, 2); //defined in setup_exercise_all.js }
return (true);
A spherical shell of charge, uniformly distributed.
The spherical Gaussian surface.
A shell of inner radius $a$ outer radius $b$ has uniform volume charge density $\rho$. An observer is at distance $r$ from the center.
    Consider a spherical Gaussian surface of radius $r$:
  1. The amount of charge $q_{enclosed}$ inside.
  2. Find the total flux $\Phi$.
  3. Use Gauss' law to find the radial component of the electric field $E_r$ at the observer's location.
Hint:
  • Account for the absence of charge in the cavity.
  • $v_{sphere} = \frac{4}{3}\pi r^3$: volume of a sphere
  • $q = \rho v$: where $v$ is the volume that overlaps with the shell.
namespace_gauss.a = Number((~R~ * ~fraction_R~).toFixed(2)); //In cm namespace_gauss.r = Number((~R~ * ~fraction_r~).toFixed(2)); //In cm namespace_gauss.v = 4/3*Math.PI * (namespace_gauss.r * namespace_gauss.r * namespace_gauss.r - namespace_gauss.a*namespace_gauss.a*namespace_gauss.a) * 1e-6; namespace_gauss.V = 4/3*Math.PI*(~R~*~R~*~R~ - namespace_gauss.a*namespace_gauss.a*namespace_gauss.a) * 1e-6; namespace_gauss.charge_density = Number(sf_math(~Q~/namespace_gauss.V)); //In nC/m^3 if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~Q~; //In nC } else if (~fraction_R~ >= ~fraction_r~){ namespace_gauss.charge_enclosed = 0; } else { namespace_gauss.charge_enclosed = namespace_gauss.charge_density * namespace_gauss.v; //In nC } namespace_gauss.area = 4*Math.PI * namespace_gauss.r * namespace_gauss.r * 1e-4; namespace_gauss.flux = namespace_gauss.charge_enclosed * 1e-9 / 8.854e-12; namespace_gauss.e_field = namespace_gauss.flux/ namespace_gauss.area;

Solution

Electric field as a function of $r$.
$$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ &=& \frac{[[return sf_latex(namespace_gauss.charge_enclosed, 2)]] \times 10^{-9}C}{8.854\times 10^{-12}F/m} \\ &=& [[return sf_latex(namespace_gauss.flux, 2)]] Vm \end{eqnarray} $$
The problem is spherically symmetric, so the flux is given by $\Phi = E_r A$. The area of the Gaussian surface is: $$ A = 4\pi r^2 = (4\pi) ([[return namespace_gauss.r]] \times 10^{-2} m)^2 = [[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2 $$ Calculating $E_r$: $$ \begin{eqnarray} E_r &=& \frac{\Phi}{A} = \frac{[[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm}{[[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.e_field, 2)]] V/m \end{eqnarray} $$
$q_{enclosed} = $
return sf_math(namespace_gauss.charge_enclosed)
5%
$nC$
$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density || capacitance

Exercise - E field of two concentric spheres

if (int_count_times_randomized == 0){ return 0.003; } else { return random_min_max_precision(-0.003, +0.003, 4, false, -0.0005, 0.0005); }
return 10;
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.5, 1.2, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.5; } else { return random_min_max_precision(0.5, 0.8, 2); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return -0.003; } else { return random_min_max_precision(-0.005, +0.005, 4, false, -0.002, 0.002); }
return ((~fraction_r~ != ~fraction_a~) && (~fraction_r~ != 1));
A spherical shell of charge surrounding a solid conducting sphere.
The spherical Gaussian surface.
A solid conducting sphere of radius $a$ with charge $q_{in}$ is surrounded by a shell of radius $b$ which carries $q_{out}$. An observer is at distance $r$ from the center.
    Consider a spherical Gaussian surface of radius $r$:
  1. The amount of charge $q_{enclosed}$ inside.
  2. Find the total flux $\Phi$.
  3. Use Gauss' law to find the radial component of the electric field $E_r$ at the observer's location.
Hint:
  • Charges on the conducting sphere gather on the surface.
namespace_gauss.a = Number((~b~ * ~fraction_a~).toFixed(2)); //In cm namespace_gauss.r = Number((~b~ * ~fraction_r~).toFixed(2)); //In cm if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~q_out~ + ~q_in~; //In nC } else if (~fraction_a~ >= ~fraction_r~){ namespace_gauss.charge_enclosed = 0; } else { namespace_gauss.charge_enclosed = ~q_in~; //In nC } namespace_gauss.area = 4*Math.PI * namespace_gauss.r * namespace_gauss.r * 1e-4; namespace_gauss.flux = namespace_gauss.charge_enclosed * 1e-9 / 8.854e-12; namespace_gauss.e_field = namespace_gauss.flux/ namespace_gauss.area;

Solution

Electric field as a function of $r$.

Since charges are free to move in the solid conducting sphere, they naturally move to the surface of the sphere due to mutual repulsion.

$$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ &=& \frac{[[return sf_latex(namespace_gauss.charge_enclosed, 2)]] \times 10^{-9}C}{8.854\times 10^{-12}F/m} \\ &=& [[return sf_latex(namespace_gauss.flux, 2)]] Vm \end{eqnarray} $$
The problem is spherically symmetric, so the flux is given by $\Phi = E_r A$. The area of the Gaussian surface is: $$ A = 4\pi r^2 = (4\pi) ([[return namespace_gauss.r]] \times 10^{-2} m)^2 = [[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2 $$ Calculating $E_r$: $$ \begin{eqnarray} E_r &=& \frac{\Phi}{A} = \frac{[[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm}{[[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.e_field, 2)]] V/m \end{eqnarray} $$
$q_{enclosed} = $
return sf_math(namespace_gauss.charge_enclosed)
5%
$nC$
$\Phi = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || charge_density

Exercise - E field of two concentric cylinders

A solid conducting wire surrounded by a hollow cylinder. The cylindrical Gaussian surface, the observer, and the charges are not shown.
A solid conducting wire of radius $a$ with linear charge density $\lambda_{in}$ is surrounded by a hollow cylinder of radius $b$ which carries $\lambda_{out}$. An observer is at distance $r$ from the center of the wire. Consider a cylindrical Gaussian surface of radius $r$ and length $l$.
  1. The amount of charge $q_{enclosed}$ inside.
  2. Find the total flux $\Phi$.
  3. Use Gauss' law to find the radial component of the electric field $E_r$ at distance $r$.
Reminder: $\epsilon_0 = 8.854\times 10^{-12}F/m$.
Very big or very small numbers can be entered as "1.234e-6" (for $ 1.234\times 10^{-6}$).
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(-3, 3, 1, false, -0.1, 0.1); }
if (int_count_times_randomized == 0){ return -2; } else { return random_min_max_precision(-3, 3, 1, false, -0.1, 0.1); }
return 10;
if (int_count_times_randomized == 0){ return 0.5; } else { return random_min_max_precision(0.5, 0.8, 2); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.8; } else { return random_min_max_precision(0.3, 1.4, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1.5, 5, 1); //defined in setup_exercise_all.js }
return ((~fraction_r~ != ~fraction_a~) && (~fraction_r~ != 1));
Hint:
  • Electric field is radially, so does not pass through all three surfaces of the Gaussian cylinder.
  • $\Phi_{total} = \frac{q_{enclosed}}{\epsilon_0} $.
namespace_gauss.a = Number((~b~ * ~fraction_a~).toFixed(2)); //In cm namespace_gauss.r = Number((~b~ * ~fraction_r~).toFixed(2)); //In cm if (~fraction_r~>=1){ namespace_gauss.charge_enclosed = ~lambda_out~ + ~lambda_in~; //In nC/m } else if (~fraction_a~ >= ~fraction_r~){ namespace_gauss.charge_enclosed = 0; } else { namespace_gauss.charge_enclosed = ~lambda_in~; //In nC/m } namespace_gauss.charge_enclosed = namespace_gauss.charge_enclosed * 1e-9 * ~l~; namespace_gauss.flux = namespace_gauss.charge_enclosed/(8.854e-12); namespace_gauss.area = 2*Math.PI* namespace_gauss.r * ~l~; namespace_gauss.e_field = namespace_gauss.flux/namespace_gauss.area;

Solution

Since charges are free to move in the solid conducting wire, they naturally move to the surface of the wire due to mutual repulsion.

$q_{enclosed} = $
return get_scientific_notation_math(namespace_gauss.charge_enclosed * 1e9, 2)
5%
$nC$
$\Phi_{total} = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$\Phi_{left} = $
return 0
5%
, $\Phi_{right} = $
return 0
5%

$\Phi_{curved} = $
return get_scientific_notation_math(namespace_gauss.flux, 2)
5%

$E_r = $
return get_scientific_notation_math(namespace_gauss.e_field, 2)
5%
Select unit for electric flux $\Phi$:
$V/m$
$C/m$
$N/C$
$Vm$
3
Select unit for electric field $E$:
$V/m$
$C/m$
$N/C^2$
$Vm$
0
electricity || gauss_law || e_field

Exercise - Electric flux through a cube

if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(2, 15, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 30; } else { return random_min_max_precision(20, 70, 0, true); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 270; } else { return [0, 90, 180, 270][Math.floor(Math.random() * 4)] }
if (int_count_times_randomized == 0){ return +1; } else { return [-1, +1][Math.floor(Math.random() * 2)] }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 5, 1); //defined in setup_exercise_all.js }
return (true);
The six surfaces of a cube with length $~l_1~ m$ on each side, with $\vec A_1$, $\vec A_2$, $\vec A_3$ in the front, $\vec A_4$, $\vec A_5$, $\vec A_6$ in the back.
A cube measuring $~l_1~ m$ on each side is immersed in an uniform electric field with magnitude $~e_field_1~ V/m$, pointing at $~angle_with_axis_1_degree~ ^\circ$ [[return (~int_cw_or_ccw_1~ >0)? "counterclockwise" : "clockwise"]] to the [[return direction_axis_1]] on the $xy$-plane.
  1. Write down his E field in vector notation.
  2. Find the electric flux through each of the surfaces.
  3. Find the total electric flux.
switch (~angle_axis_1_degree~) { case 0: direction_axis_1 = "positive x-axis"; break; case 90: direction_axis_1 = "positive y-axis"; break; case 180: direction_axis_1 = "negative x-axis"; break; case 270: direction_axis_1 = "negative y-axis"; break; default: direction_axis_1 = "East"; break; } area_1 = ~l_1~ * ~l_1~; angle_1_degree = ~angle_axis_1_degree~ + ~int_cw_or_ccw_1~ * ~angle_with_axis_1_degree~; angle_1_radian = angle_1_degree * Math.PI / 180; e_field_vector = new Class_Vector(~e_field_1~ * Math.cos(angle_1_radian), ~e_field_1~ * Math.sin(angle_1_radian));
Hint:
  • Draw a diagram of the electric field vector on the $xy$-plane and decompose using $\sin$ and $\cos$.
  • The area vectors of the six sides of the cube can be written down easily as $\pm A \hat i$, $\pm A \hat j$, $\pm A \hat k$.
  • Taking the dot product $\Phi = \vec E \cdot \vec A$ gives the flux.

Solution

The electric field vector on the $xy$-plane. There is no $z$-component because the question stated the field is only on the $xy$-plane.
E field
The figure shows the E field on the $xy$-plane. Decomposing the vector gives: $$ \vec E = ([[return e_field_vector.string_mathjax(4, false)]] + 0 \hat k)V/m $$
Area vectors
$\vec A_1 = + A \hat i = +(~l_1~ m)^2 \hat i = +[[return area_1 ]] \hat i m^2$.
Similarly, we have: $$ \begin{eqnarray} \vec A_2 &=& +[[return area_1 ]] \hat j m^2 \\ \vec A_3 &=& +[[return area_1 ]] \hat k m^2 \\ \vec A_4 &=& -[[return area_1 ]] \hat i m^2 \\ \vec A_5 &=& -[[return area_1 ]] \hat j m^2 \\ \vec A_6 &=& -[[return area_1 ]] \hat k m^2 \end{eqnarray} $$
Electric flux
$$ \begin{eqnarray} \Phi_1 &=& (+[[return area_1 ]] \hat i m^2)\cdot ([[return e_field_vector.string_mathjax(4, false)]] + 0 \hat k)V/m \\ &=& [[return sf_latex(+1 * area_1 * e_field_vector.x)]] Vm \end{eqnarray} $$ Similarly, we have: $$ \begin{eqnarray} \Phi_2 &=& [[return sf_latex(+1 * area_1 * e_field_vector.y)]] Vm \\ \Phi_3 &=& 0 Vm \\ \Phi_4 &=& [[return sf_latex(-1 * area_1 * e_field_vector.x)]] Vm \\ \Phi_5 &=& [[return sf_latex(-1 * area_1 * e_field_vector.y)]] Vm \\ \Phi_6 &=& 0 Vm \end{eqnarray} $$ The total flux is: $$ \Phi_{total} = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 + \Phi_5 + \Phi_6 = 0Vm $$ This is the expected answer because the E field being uniform implies that there are no charges enclosed by the cube, which by Gauss' Law means the total electrix flux must be zero.
$\vec E = $
return sf_math(e_field_vector.x)
5%
$\hat i + $
return sf_math(e_field_vector.y)
5%
$\hat j + $
return 0
0
$\hat k$
$\Phi_1 = $
return sf_math(+1 * area_1 * e_field_vector.x)
5%
, $\Phi_2 = $
return sf_math(+1 * area_1 * e_field_vector.y)
5%
, $\Phi_3 = $
return 0
0

$\Phi_4 = $
return sf_math(-1 * area_1 * e_field_vector.x)
5%
, $\Phi_5 = $
return sf_math(-1 * area_1 * e_field_vector.y)
5%
, $\Phi_6 = $
return 0
0

$\Phi_{total} = $
return 0
0
Select unit for $\vec E$:
$N$
$V/m$
$C/m$
$Vm$
1
Select unit for electric flux:
$N$
$V/m$
$C/m$
$Vm$
3