Exercise Gauss' Law
The area vector is perpendicular to the plane.
First draw the area vector perpendicular to the plane, then the angle between $\vec A$ and $\vec B$ can be read off from the diagram to be: $$ \phi = [[return namespace_gauss.angle_delta]]^\circ $$
The electric flux is: $$ \begin{eqnarray} \Phi &=& E A \cos \phi \\ &=& (~field~ V/m)(~area~ m^2) \cos([[return namespace_gauss.angle_delta]]^\circ) \\ &=& [[return sf_latex(namespace_gauss.flux)]] Vm \end{eqnarray} $$
Symbolically, $\Phi = E_rA=E_r(4\pi r^2)$, and $q_{enclosed} = Q$. Put both into Gauss' law: $$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ \Rightarrow E_r (4\pi r^2) &=& \frac{Q}{\epsilon_0} \\ \Rightarrow E_r &=& \frac{Q}{4\pi \epsilon_0 r^2} \end{eqnarray} $$
Symbolically, $\Phi = \Phi_{left} + \Phi_{right} + \Phi_{curved} = 0 + 0 + \Phi_{curved} = EA_{curved} = E_r (2\pi r l)$ and $q_{enclosed} = \lambda l$.
Put both into Gauss' law: $$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ \Rightarrow E_r (2\pi r l) &=& \frac{\lambda l}{\epsilon_0} \\ \Rightarrow E_r &=& \frac{\lambda}{2\pi \epsilon_0 r} \end{eqnarray} $$ You can see from the calculation that $E_r$ does not depend on $l$. Although we used $l = ~l~ m$, $l$ appears once in the numerator (in $q_{enclosed} = \lambda l$) and once in the denominatior (in $A_{curved} = 2\pi r l$), so it cancels out in $E$.
Two large sheets with charge density $\sigma_1 = ~density_1~ nC/m^2$ and $\sigma_2 = ~density_2~ nC/m^2$ are placed one above the other.
You may use the equation of the $z$-component of the E field from a large sheet derived earlier. Use the sign to denote the direction of the field (up: $+$, down: $-$).
First consider only sheet 1 (i.e. ignoring sheet 2).
Next consider only sheet 2 (i.e. ignoring sheet 1).
Now consider both sheets together, sheet 1 above sheet 2.
The magnitude of the field produced by a sheet of charge is given by $|\vec E|=\frac{|\sigma|}{\epsilon_0}$. The direction can be deduced by the direction of the arrows in the figure (field goes away from positive charges but toward negative charges).
$$ \begin{eqnarray} E_{1, above} &=& \pm \frac{|\sigma_1|}{2\epsilon_0} \\ &=& \frac{~density_1~ \times 10^{-9}}{2(8.854\times 10^{-12})} \\ &=& [[return sf_latex(namespace_gauss.field_above_1)]] V/m \end{eqnarray} $$ The sign is chosen based on the direction of the yellow arrow above sheet 1.
$$ \begin{eqnarray} E_{1, below} &=& \pm \frac{|\sigma_1|}{2\epsilon_0} \\ &=& \frac{[[return (-1*~density_1~.toFixed(3))]] \times 10^{-9}}{2(8.854\times 10^{-12})} \\ &=& [[return sf_latex(namespace_gauss.field_below_1)]] V/m \end{eqnarray} $$ The sign is chosen based on the direction of the yellow arrow below sheet 1.
$$ \begin{eqnarray} E_{2, above} &=& \pm \frac{|\sigma_2|}{2\epsilon_0} \\ &=& \frac{~density_2~ \times 10^{-9}}{2(8.854\times 10^{-12})} \\ &=& [[return sf_latex(namespace_gauss.field_above_2)]] V/m \end{eqnarray} $$ The sign is chosen based on the direction of the green arrow above sheet 2.
$$ \begin{eqnarray} E_{2, below} &=& \pm \frac{|\sigma_2|}{2\epsilon_0} \\ &=& \frac{[[return (-1*~density_2~.toFixed(3))]] \times 10^{-9}}{2(8.854\times 10^{-12})} \\ &=& [[return sf_latex(namespace_gauss.field_below_2)]] V/m \end{eqnarray} $$ The sign is chosen based on the direction of the green arrow below sheet 2.
A position above sheet 1 is also above sheet 2, so we have: $$ \begin{eqnarray} E_{12, above} &=& E_{1, above} + E_{2, above} \\ &=& ([[return sf_latex(namespace_gauss.field_above_1)]] V/m) + ([[return sf_latex(namespace_gauss.field_above_2)]] V/m) \\ &=& [[return sf_latex(namespace_gauss.field_above_total)]] V/m \end{eqnarray} $$
A position in the middle is below sheet 1 but above sheet 2, so we have: $$ \begin{eqnarray} E_{12, middle} &=& E_{1, below} + E_{2, above} \\ &=& ([[return sf_latex(namespace_gauss.field_below_1)]] V/m) + ([[return sf_latex(namespace_gauss.field_above_2)]] V/m) \\ &=& [[return sf_latex(namespace_gauss.field_middle_total)]] V/m \end{eqnarray} $$
A position below sheet 2 is also below sheet 1, so we have: $$ \begin{eqnarray} E_{12, below} &=& E_{1, below} + E_{2, below} \\ &=& ([[return sf_latex(namespace_gauss.field_below_1)]] V/m) + ([[return sf_latex(namespace_gauss.field_below_2)]] V/m) \\ &=& [[return sf_latex(namespace_gauss.field_below_total)]] V/m \end{eqnarray} $$
Since charges are free to move in the solid conducting sphere, they naturally move to the surface of the sphere due to mutual repulsion.
$$ \begin{eqnarray} \Phi &=& \frac{q_{enclosed}}{\epsilon_0} \\ &=& \frac{[[return sf_latex(namespace_gauss.charge_enclosed, 2)]] \times 10^{-9}C}{8.854\times 10^{-12}F/m} \\ &=& [[return sf_latex(namespace_gauss.flux, 2)]] Vm \end{eqnarray} $$ The problem is spherically symmetric, so the flux is given by $\Phi = E_r A$. The area of the Gaussian surface is: $$ A = 4\pi r^2 = (4\pi) ([[return namespace_gauss.r]] \times 10^{-2} m)^2 = [[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2 $$ Calculating $E_r$: $$ \begin{eqnarray} E_r &=& \frac{\Phi}{A} = \frac{[[return get_scientific_notation_latex(namespace_gauss.flux, 2)]] Vm}{[[return get_scientific_notation_latex(namespace_gauss.area, 2)]] m^2} \\ &=& [[return get_scientific_notation_latex(namespace_gauss.e_field, 2)]] V/m \end{eqnarray} $$Since charges are free to move in the solid conducting wire, they naturally move to the surface of the wire due to mutual repulsion.