Exercise Circular Motion

Exercise here can be loaded by html files

circular_motion || rotation

Exercise - Angular velocity basic

if (int_count_times_randomized == 0){ return 60; } else { return random_min_max_precision(30, 350, -1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(2, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
return (true);
A object in uniform circular motion.
[[ namespace_circular_motion.theta = ~theta~ * Math.PI/180; namespace_circular_motion.omega = namespace_circular_motion.theta / ~t~; namespace_circular_motion.v = namespace_circular_motion.omega * ~r~; return ""; ]] An object travels around a circle of radius $~r~ m$. Its angle measured at the center increases by $~theta~^\circ$ in $~t~ s$. Find the angular velocity $\omega$.
Hint:
  • $\omega = \frac{d\theta}{dt} = \frac{\Delta \theta}{\Delta t}$.

Solution

Convert unit
First we convert the angle to radians: $$ \begin{eqnarray} \theta &=& ~theta~^\circ \times \frac{\pi \ rad}{180^\circ} \\ &=& [[return sf_latex(namespace_circular_motion.theta)]] rad \end{eqnarray} $$
Angular velocity
$$ \begin{eqnarray} \omega &=& \frac{\Delta \theta}{\Delta t} \\ &=& \frac{[[return sf_latex(namespace_circular_motion.theta)]] rad}{~t~ s} \\ &=& [[return sf_latex(namespace_circular_motion.omega)]] rad/s \end{eqnarray} $$ It means that every second the angle increases by $[[return sf_latex(namespace_circular_motion.omega)]] rad$.
$\omega = $
return sf_math(namespace_circular_motion.omega)
5%
Select unit for $\omega$:
$m/s$
$Hz$
$rad$
$rad/s$
3
circular_motion || rotation

Exercise - Angular velocity and tangential speed

if (int_count_times_randomized == 0){ return 60; } else { return random_min_max_precision(30, 350, -1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(2, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
return (true);
A object in uniform circular motion.
[[ namespace_circular_motion.theta = ~theta~ * Math.PI/180; namespace_circular_motion.omega = namespace_circular_motion.theta / ~t~; namespace_circular_motion.v = namespace_circular_motion.omega * ~r~; return ""; ]] An object travels around a circle of radius $~r~ m$. Its angle measured at the center increases by $~theta~^\circ$ in $~t~ s$.
    Find:
  1. The angular velocity $\omega$.
  2. The tangential speed $v$.
Hint:
  • $\omega = \frac{d\theta}{dt} = \frac{\Delta \theta}{\Delta t}$.
  • $v = r \omega$.

Solution

Convert unit
First we convert the angle to radians: $$ \begin{eqnarray} \theta &=& ~theta~^\circ \times \frac{\pi \ rad}{180^\circ} \\ &=& [[return sf_latex(namespace_circular_motion.theta)]] rad \end{eqnarray} $$
Angular velocity
$$ \begin{eqnarray} \omega &=& \frac{\Delta \theta}{\Delta t} \\ &=& \frac{[[return sf_latex(namespace_circular_motion.theta)]] rad}{~t~ s} \\ &=& [[return sf_latex(namespace_circular_motion.omega)]] rad/s \end{eqnarray} $$ It means that every second the angle increases by $[[return sf_latex(namespace_circular_motion.omega)]] rad$.
Tangential speed
$$ \begin{eqnarray} v &=& r \omega \\ &=& (~r~ m)([[return sf_latex(namespace_circular_motion.omega)]] rad/s) \\ &=& [[return sf_latex(namespace_circular_motion.v)]] m/s \end{eqnarray} $$
$\omega = $
return sf_math(namespace_circular_motion.omega)
5%

$v = $
return sf_math(namespace_circular_motion.v)
5%
Select unit for $\omega$:
$m/s$
$Hz$
$rad$
$rad/s$
3
Select unit for $v$:
$m/s$
$Hz$
$rad$
$rad/s$
0
circular_motion || rotation

Exercise - Angular acceleration basic

if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(-10, 10, -1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 8; } else { return random_min_max_precision(-10, 10, 0, false, -0.5, 0.5); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(2, 20, 0); //defined in setup_exercise_all.js }
return (true);
[[ namespace_circular_motion.omega_f = ~omega_i~ + ~delta_omega~; namespace_circular_motion.alpha = ~delta_omega~ / ~t~; return ""; ]] An object travels around a circle with an initial angular velocity of $~omega_i~ rad/s$. After $~t~ s$ its angular velocity becomes $[[return namespace_circular_motion.omega_f]] rad/s$.
Find the angular acceleration $\alpha$.
Hint: $\alpha = \frac{d\omega}{dt} = \frac{\Delta \omega}{\Delta t}$.

Solution

$$ \begin{eqnarray} \alpha &=& \frac{\Delta \omega}{\Delta t} \\ &=& \frac{\omega_f - \omega_i}{\Delta t} \\ &=& \frac{([[return namespace_circular_motion.omega_f]] rad/s) - (~omega_i~ rad/s)}{~t~ s} \\ &=& \frac{ ~delta_omega~ rad/s}{~t~ s} \\ &=& [[return sf_latex(namespace_circular_motion.alpha)]] rad/s^2 \end{eqnarray} $$
$\alpha = $
return sf_math(namespace_circular_motion.alpha)
5%
Select unit for $\alpha$:
$m/s$
$Hz$
$rad$
$rad/s$
$rad/s^2$
4
circular_motion || rotation

Exercise - Angular velocity, frequency, and period ($\omega$, $f$ and $T$)

if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 0; } else { return random_min_max_precision(0, 2, 0); //defined in setup_exercise_all.js. }
return (true);
[[ namespace_circular_motion.f = ~omega~/(2*Math.PI); namespace_circular_motion.period = 2*Math.PI/~omega~; return ""; ]] The value of one of the variables (angular velocity $\omega$, frequency $f$, and period $T$) below has been given to you. Use that information to calculate the others.
Hint: Use $\omega = \frac{2\pi}{T} = 2\pi f$.

Solution

Rearrange $\omega = \frac{2\pi}{T} = 2\pi f$ to solve for what you need.

$\omega = $
return sf_math(~omega~);
5%
Unit:
return "rad/s";
not_number

$f=$
return sf_math(namespace_circular_motion.f);
5%
Unit:
return "Hz";
return (x_user.toLowerCase() == "hz" || x_user.toLowerCase() == "rps");

$T=$
return sf_math(namespace_circular_motion.period);
5%
Unit:
return "s";
not_number
circular_motion || rotation

Exercise - Circular motion given time

if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(5, 100, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(2, 8, 0); //defined in setup_exercise_all.js }
return (true);
A object moves around a circle of radius $r = ~r~ m$ a total of $~count_revolution~$ time[[return (~count_revolution~>1)? "s":""]] every $~t_total~ s$.
    Find:
  1. $\omega$: the angular velocity.
  2. $f$: the frequency.
  3. $T$: the period.
  4. $v$: the tangential speed.
namespace_circular_motion.period = ~t_total~/~count_revolution~; namespace_circular_motion.omega = 2*Math.PI/namespace_circular_motion.period; namespace_circular_motion.f = 1/namespace_circular_motion.period; namespace_circular_motion.v = namespace_circular_motion.omega * ~r~;
Hint:
  • The time it takes for the object to go around 1 circle is the period $T$.
  • $\omega = \frac{2\pi}{T} = 2\pi f$.
  • $v = \omega r$.

Solution

Period
The period is the time it takes to go around the circle once: $$ \begin{eqnarray} T &=& \frac{~t_total~ s}{~count_revolution~} \\ &=& [[return sf_latex(namespace_circular_motion.period)]] s \end{eqnarray} $$ Once we have $T = [[return sf_latex(namespace_circular_motion.period)]] s$, we can find everything else using $\omega = \frac{2\pi}{T} = 2\pi f$ and $v = \omega r$.
Angular velocity $\omega$
$$ \begin{eqnarray} \omega &=& \frac{2\pi}{T} \\ &=& \frac{2\pi}{[[return sf_latex(namespace_circular_motion.period)]] s} \\ &=& [[return sf_latex(namespace_circular_motion.omega)]] rad/s \end{eqnarray} $$
Frequency $f$
$$ \begin{eqnarray} f &=& \frac{1}{T} \\ &=& \frac{1}{[[return sf_latex(namespace_circular_motion.period)]] s} \\ &=& [[return sf_latex(namespace_circular_motion.f)]] Hz \end{eqnarray} $$
Tangential speed $v$
$$ \begin{eqnarray} v &=& \omega r \\ &=& ([[return sf_latex(namespace_circular_motion.omega)]] rad/s) (~r~ m) \\ &=& [[return sf_latex(namespace_circular_motion.v)]] m/s \end{eqnarray} $$
$\omega = $
return sf_math(namespace_circular_motion.omega);
5%
Unit:
return "rad/s";
not_number

$f=$
return sf_math(namespace_circular_motion.f);
5%
Unit:
return "Hz";
return (x_user.toLowerCase() == "hz" || x_user.toLowerCase() == "rps");

$T=$
return sf_math(namespace_circular_motion.period);
5%
Unit:
return "s";
not_number

$v=$
return sf_math(namespace_circular_motion.v);
5%
Unit:
return "m/s";
not_number
circular_motion || rotation

Exercise - Circular motion given description

return 1;
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(2, 30, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(2, 8, 0); //defined in setup_exercise_all.js }
return (true);
A object moves around a circle of radius $r = ~r~ m$ a total of $~count_revolution~$ time[[return (~count_revolution~>1)? "s":""]] every second.
    Find:
  1. $\omega$: the angular velocity.
  2. $f$: the frequency.
  3. $T$: the period.
  4. $v$: the tangential speed.
namespace_circular_motion.period = ~t_total~/~count_revolution~; namespace_circular_motion.omega = 2*Math.PI/namespace_circular_motion.period; namespace_circular_motion.f = ~count_revolution~; namespace_circular_motion.v = namespace_circular_motion.omega * ~r~;
Hint:
  • The number of revolutions per second is the frequency $f$.
  • $\omega = \frac{2\pi}{T} = 2\pi f$.
  • $v = \omega r$.

Solution

Frequency $f$
By definition, the number of revolutions per second is the frequency $f$, so we have $f = [[return namespace_circular_motion.f]] Hz$ (or $rps$). Once we have $f$, we can find everything else using $\omega = \frac{2\pi}{T} = 2\pi f$ and $v = \omega r$.
Period
The period is the time it takes to go around the circle once: $$ \begin{eqnarray} T &=& \frac{1}{f} \\ &=& \frac{1}{~count_revolution~ Hz} \\ &=& [[return sf_latex(namespace_circular_motion.period)]] s \end{eqnarray} $$
Angular velocity $\omega$
$$ \begin{eqnarray} \omega &=& 2\pi f \\ &=& 2\pi (~count_revolution~ Hz) \\ &=& [[return sf_latex(namespace_circular_motion.omega)]] rad/s \end{eqnarray} $$
Tangential speed $v$
$$ \begin{eqnarray} v &=& \omega r \\ &=& ([[return sf_latex(namespace_circular_motion.omega)]] rad/s) (~r~ m) \\ &=& [[return sf_latex(namespace_circular_motion.v)]] m/s \end{eqnarray} $$
$\omega = $
return sf_math(namespace_circular_motion.omega);
5%
Unit:
return "rad/s";
not_number

$f=$
return sf_math(namespace_circular_motion.f);
5%
Unit:
return "Hz";
return (x_user.toLowerCase() == "hz" || x_user.toLowerCase() == "rps");

$T=$
return sf_math(namespace_circular_motion.period);
5%
Unit:
return "s";
not_number

$v=$
return sf_math(namespace_circular_motion.v);
5%
Unit:
return "m/s";
not_number
circular_motion || rotation

Exercise - Centripetal acceleration basic

if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 0; } else { return random_min_max_precision(0, 2, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js. }
return (true);
An object of mass $~m~ kg$ moves around a circle of radius $~r~ m$ with [[ namespace_circular_motion.omega = ~omega~; namespace_circular_motion.f = ~omega~/(2*Math.PI); namespace_circular_motion.period = 2*Math.PI/~omega~; namespace_circular_motion.a_cent = ~r~ * ~omega~*~omega~; namespace_circular_motion.f_cent = ~m~ * namespace_circular_motion.a_cent; namespace_circular_motion.v = ~r~ * ~omega~; if (~int_variable_choice~ == 0){ return `angular velocity $~omega~ rad/s$.`; } else if (~int_variable_choice~ == 1){ return `frequency $${sf_latex(namespace_circular_motion.f)} Hz$.`; } else if (~int_variable_choice~ == 2){ return `period $${sf_latex(namespace_circular_motion.period)} s$.`; } else { return ""; } ]]
    Find:
  1. The centripetal acceleration $a_{cent}$.
  2. The tangential speed $v$.
Hint:
  • Use $\omega = \frac{2\pi}{T} = 2\pi f$ to find $\omega$ first.
  • $a_{cent} = r \omega^2$.
  • $v = r \omega$.

Solution

Centripetal acceleration
$$ \begin{eqnarray} a_{cent} &=& r \omega^2 \\ &=& (~r~ m)(~omega~ rad/s)^2 \\ &=& [[return sf_latex(namespace_circular_motion.a_cent)]] m/s^2 \end{eqnarray} $$
Tangential speed
$$ \begin{eqnarray} v &=& r \omega \\ &=& (~r~ m)(~omega~ rad/s) \\ &=& [[return sf_latex(namespace_circular_motion.v)]] m/s \end{eqnarray} $$
$a_{cent} = $
return sf_math(namespace_circular_motion.a_cent);
5%
Unit:
return "m/s^2";
not_number

$v=$
return sf_math(namespace_circular_motion.v);
5%
Unit:
return "m/s";
not_number
circular_motion || rotation

Exercise - Centripetal force basic

if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 0; } else { return random_min_max_precision(0, 2, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js. }
return (true);
An object of mass $~m~ kg$ moves around a circle of radius $~r~ m$ with [[ namespace_circular_motion.omega = ~omega~; namespace_circular_motion.f = ~omega~/(2*Math.PI); namespace_circular_motion.period = 2*Math.PI/~omega~; namespace_circular_motion.a_cent = ~r~ * ~omega~*~omega~; namespace_circular_motion.f_cent = ~m~ * namespace_circular_motion.a_cent; namespace_circular_motion.v = ~r~ * ~omega~; if (~int_variable_choice~ == 0){ return `angular velocity $~omega~ rad/s$.`; } else if (~int_variable_choice~ == 1){ return `frequency $${sf_latex(namespace_circular_motion.f)} Hz$.`; } else if (~int_variable_choice~ == 2){ return `period $${sf_latex(namespace_circular_motion.period)} s$.`; } else { return ""; } ]]
    Find:
  1. The centripetal acceleration $a_{cent}$.
  2. The centripetal force $F_{cent}$.
  3. The tangential speed $v$.
Hint:
  • Use $\omega = \frac{2\pi}{T} = 2\pi f$ to find $\omega$ first.
  • $a_{cent} = r \omega^2$.
  • $F_{cent} = m a_{cent} = m r \omega^2$.
  • $v = r \omega$.

Solution

Centripetal acceleration
$$ \begin{eqnarray} a_{cent} &=& r \omega^2 \\ &=& (~r~ m)(~omega~ rad/s)^2 \\ &=& [[return sf_latex(namespace_circular_motion.a_cent)]] m/s^2 \end{eqnarray} $$
Centripetal force
$$ \begin{eqnarray} F_{cent} &=& m a_{cent} \\ &=& m r \omega^2 \\ &=& (~m~ kg)(~r~ m)(~omega~ rad/s)^2 \\ &=& [[return sf_latex(namespace_circular_motion.f_cent)]] N \end{eqnarray} $$
Tangential speed
$$ \begin{eqnarray} v &=& r \omega \\ &=& (~r~ m)(~omega~ rad/s) \\ &=& [[return sf_latex(namespace_circular_motion.v)]] m/s \end{eqnarray} $$
$a_{cent} = $
return sf_math(namespace_circular_motion.a_cent);
5%
Unit:
return "m/s^2";
not_number

$F_{cent}=$
return sf_math(namespace_circular_motion.f_cent);
5%
Unit:
return "N";
not_number

$v=$
return sf_math(namespace_circular_motion.v);
5%
Unit:
return "m/s";
not_number
circular_motion || rotation

Exercise - Centripetal force from $v$

if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 0; } else { return random_min_max_precision(0, 2, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js. }
if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js. }
return (true);
[[ namespace_circular_motion.omega = ~omega~; namespace_circular_motion.f = ~omega~/(2*Math.PI); namespace_circular_motion.period = 2*Math.PI/~omega~; namespace_circular_motion.a_cent = ~r~ * ~omega~*~omega~; namespace_circular_motion.f_cent = ~m~ * namespace_circular_motion.a_cent; namespace_circular_motion.v = ~r~ * ~omega~; return ""; ]] An object of mass $~m~ kg$ moves around a circle of radius $~r~ m$ with tangential speed $[[return sf_latex(namespace_circular_motion.v)]] m/s$.
    Find:
  1. The centripetal acceleration $a_{cent}$.
  2. The centripetal force $F_{cent}$.
  3. The angular velocity $\omega$.
Hint:
  • $a_{cent} = \frac{v^2}{r}$.
  • $F_{cent} = m a_{cent} = \frac{m v^2}{r}$.
  • $v = r \omega$.

Solution

Centripetal acceleration
$$ \begin{eqnarray} a_{cent} &=& \frac{v^2}{r} \\ &=& \frac{([[return sf_latex(namespace_circular_motion.v)]] m/s)^2}{~r~ m} \\ &=& [[return sf_latex(namespace_circular_motion.a_cent)]] m/s^2 \end{eqnarray} $$
Centripetal force
$$ \begin{eqnarray} F_{cent} &=& m a_{cent} \\ &=& \frac{m v^2}{r} \\ &=& \frac{(~m~ kg)([[return sf_latex(namespace_circular_motion.v)]] m/s)^2}{~r~ m} \\ &=& [[return sf_latex(namespace_circular_motion.f_cent)]] N \end{eqnarray} $$
Angular velocity
$$ \begin{eqnarray} v &=& r \omega \\ \Rightarrow \omega &=& \frac{v}{r} \\ &=& \frac{[[return sf_latex(namespace_circular_motion.v)]] m/s}{~r~ m} \\ &=& ~omega~ rad/s \end{eqnarray} $$
$a_{cent} = $
return sf_math(namespace_circular_motion.a_cent);
5%
Unit:
return "m/s^2";
not_number

$F_{cent}=$
return sf_math(namespace_circular_motion.f_cent);
5%
Unit:
return "N";
not_number

$\omega=$
return ~omega~;
5%
Unit:
return "rad/s";
not_number
circular_motion || rotation

Exercise - Breaking a string in circular motion

if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 7, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 12; } else { return random_min_max_precision(10, 30, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 50; } else { return random_min_max_precision(30, 100, 0); //defined in setup_exercise_all.js }
return (true);
[[ namespace_circular_motion.v = Math.sqrt(~r~ * 0.01 * ~tension~ / ~m~); return ""; ]] A ball of mass $~m~ kg$ is tied to a string $~r~ cm$ (not in meters!) long and swung around in circles. The string can withstand a maximum tension of $~tension~N$.
How fast (in terms of the tangential speed $v$) do you have to spin the object in order to break the string?
Hint: $F_{cent} = \frac{m v^2}{r}$.

Solution

The centripetal force on the ball is provided by the tension $Tension$, so we can identify $F_{cent}=Tension$ (I don't want to use $T$ for tension here because $T$ is also the notation for period): $$ \begin{eqnarray} Tension &=& F_{cent} = \frac{mv^2}{r} \\ v &=& \sqrt{\frac{r (Tension)}{m}} \\ &=& \sqrt{\frac{(~r~ \times 0.01 m) (~tension~ N)}{~m~ kg}} \\ &=& [[return sf_latex(namespace_circular_motion.v)]] m/s \end{eqnarray} $$
$v= $
return sf_math(namespace_circular_motion.v)
5%
$m/s$
rotation

Exercise - An accelerating wheel 1

if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(5, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(1, 7, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 5; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.2; } else { return random_min_max_precision(0.1, 0.5, 1); //defined in setup_exercise_all.js }
return (true);
[[ namespace_circular_motion.theta = ~omega_0~ * ~t~ + 0.5 * ~alpha~ * ~t~*~t~; namespace_circular_motion.s = namespace_circular_motion.theta * ~r~; return ""; ]] A wheel of radius $~r~m$ was originally rolling on the ground at $~omega_0~ rad/s$. It then accelerated at $~alpha~ rad/s^2$ for $~t~ s$.
    Find for this time period:
  1. The angle of rotation (i.e. the angular displacement) $\theta$.
  2. The distance $s$ it traveled on the ground.
Hint: Use the angular version of the equations of motion.

Solution

The angle
The information given:
  • $\theta_0=0 rad$
  • $\omega_0=~omega_0~ rad/s$
  • $\theta=?$
  • $\omega=$ missing
  • $\alpha= ~alpha~ rad/s^2$
  • $t=~t~ s$
Note that "$\theta=?$" above means we are looking for $\theta$. Out of the final variables $\theta, \omega, \alpha, t$, only $\omega$ does not appear in the list above. This means we should use the $\omega$-equation: $$ \begin{eqnarray} \theta-\theta_0 &=& \omega_0 t + \frac{1}{2} \alpha t^2 \\ \Rightarrow \theta &=& (~omega_0~ rad/s) (~t~ s) + \frac{1}{2} (~alpha~ rad/s^2) (~t~ s)^2 \\ &=& [[return sf_latex(namespace_circular_motion.theta)]] rad \end{eqnarray} $$
Distance traveled
$$ \begin{eqnarray} s &=& r \theta \\ &=& (~r~ m)([[return sf_latex(namespace_circular_motion.theta)]] rad) \\ &=& [[return sf_latex(namespace_circular_motion.s)]]m \end{eqnarray} $$
$\theta= $
return sf_math(namespace_circular_motion.theta)
5%
$rad$
$s= $
return sf_math(namespace_circular_motion.s)
5%
$m$
rotation

Exercise - An accelerating wheel 2

if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(2, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 4; } else { return random_min_max_precision(2, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 80; } else { return random_min_max_precision(10, 100, -1); //defined in setup_exercise_all.js }
return (true);
[[ namespace_circular_motion.alpha = (~omega_f~*~omega_f~ - ~omega_0~*~omega_0~) / (2 * ~theta~); return ""; ]] A wheel was originally rolling on the ground at $~omega_0~ rad/s$. Its final angular velocity became $~omega_f~ rad/s$ after it rotated $~theta~ rad$.
Find the angular acceleration of the wheel.
Hint: Use the angular version of the equations of motion.

Solution

The information given:
  • $\theta_0=0 rad$
  • $\omega_0=~omega_0~ rad/s$
  • $\theta= ~theta~ rad$
  • $\omega= ~omega_f~ rad/s$
  • $\alpha=$ ?
  • $t=$ missing
Note that "$\alpha=?$" above means we are looking for $\alpha$. Out of the final variables $\theta, \omega, \alpha, t$, only $t$ does not appear in the list above. This means we should use the $t$-equation: $$ \begin{eqnarray} \omega^2 &=& \omega_0^2 +2 \alpha \theta \\ \Rightarrow \alpha &=& \frac{\omega^2 - \omega_0^2}{2 \theta} \\ &=& \frac{(~omega_f~ rad/s)^2 - (~omega_0~ rad/s)^2}{2 (~theta~ rad) } \\ &=& [[return sf_latex(namespace_circular_motion.alpha)]] rad/s^2 \end{eqnarray} $$
$\alpha= $
return sf_math(namespace_circular_motion.alpha)
5%
Select unit for $\alpha$:
$m/s$
$Hz$
$rad$
$rad/s$
$rad/s^2$
4
rotation || moment_of_inertia

Exercise - Moment of inertia basic

if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(-3, 3, 0); //defined in setup_exercise_all.js }
return 0;
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return -3; } else { return random_min_max_precision(-3, 3, 0); //defined in setup_exercise_all.js }
return 0;
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(-3, 3, 0); //defined in setup_exercise_all.js }
return 0;
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(-3, 3, 0, false, -0.5, 0.5); //defined in setup_exercise_all.js }
return (Math.abs(~x_1~ - ~x_2~) + Math.abs(~y_1~ - ~y_2~) > 0) && (Math.abs(~x_1~ - ~x_3~) + Math.abs(~y_1~ - ~y_3~) > 0) && (Math.abs(~x_3~ - ~x_2~) + Math.abs(~y_3~ - ~y_2~) > 0);
[[ namespace_circular_motion.i_0 = ~m_1~ * ~x_1~ * ~x_1~ + ~m_2~ * ~x_2~ * ~x_2~ + ~m_3~ * ~x_3~ * ~x_3~ ; namespace_circular_motion.i_shifted = ~m_1~ * (~x_1~ - ~x_shifted~) * (~x_1~ - ~x_shifted~) + ~m_2~ * (~x_2~ - ~x_shifted~) * (~x_2~ - ~x_shifted~) + ~m_3~ * (~x_3~ - ~x_shifted~) * (~x_3~ - ~x_shifted~) ; return ""; ]]
Find the moment of inertia about the $y$-axis.
Find the moment of inertia about the vertical line $x = ~x_shifted~ m$.
Three masses attached to a rod of negligible mass.
  1. Find the moment of inertia $I_0$ about the $y$-axis.
  2. Find the moment of inertia $I_{shifted}$ about the vertical line $x = ~x_shifted~ m$.
Hint: $I = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2$.

Solution

About the $y$-axis
In $I = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2$, $r$ are the distances from the axis of rotation. From the figure we have: $$ \begin{eqnarray} r_1 &=& [[return Math.abs(~x_1~)]] m \\ r_2 &=& [[return Math.abs(~x_2~)]] m \\ r_3 &=& [[return Math.abs(~x_3~)]] m \end{eqnarray} $$ Substituting: $$ \begin{eqnarray} I_0 &=& m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 \\ &=& (~m_1~) ([[return Math.abs(~x_1~)]])^2 + (~m_2~) ([[return Math.abs(~x_2~)]])^2 + (~m_3~) ([[return Math.abs(~x_3~)]])^2 \\ &=& [[return sf_latex(namespace_circular_motion.i_0)]] kgm^2 \end{eqnarray} $$
About the line $x = ~x_shifted~$
$I$ changes value when the axis of rotation is changed. The distance of each mass to the shifted axis is: $$ \begin{eqnarray} r_1 &=& [[return Math.abs(~x_1~ - ~x_shifted~)]] m \\ r_2 &=& [[return Math.abs(~x_2~ - ~x_shifted~)]] m \\ r_3 &=& [[return Math.abs(~x_3~ - ~x_shifted~)]] m \end{eqnarray} $$ Substituting: $$ \begin{eqnarray} I_{shifted} &=& m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 \\ &=& (~m_1~) ([[return Math.abs(~x_1~ - ~x_shifted~)]])^2 + (~m_2~) ([[return Math.abs(~x_2~ - ~x_shifted~)]])^2 + (~m_3~) ([[return Math.abs(~x_3~ - ~x_shifted~)]])^2 \\ &=& [[return sf_latex(namespace_circular_motion.i_shifted)]] kgm^2 \end{eqnarray} $$
$I_0= $
return sf_math(namespace_circular_motion.i_0)
5%

$I_{shifted}= $
return sf_math(namespace_circular_motion.i_shifted)
5%
Select unit for moment of inertia:
$Nm$
$N$
$kgm$
$kgm^2$
$kgm/s$
3
rotation || moment_of_inertia || parallel_axis_theorem

Exercise - Parallel axis theorem on a disc

if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
return (true);
Rotating a disc about the center.
Rotating a disc about the edge.
[[ namespace_circular_motion.i_cm = 0.5 * ~m~ * ~r~*~r~; namespace_circular_motion.i_edge = namespace_circular_motion.i_cm + ~m~ * ~r~*~r~; return ""; ]] A disc of radius $r = ~r~ m$ and mass $m = ~m~ kg$ has moment of inertia about its center given by $I_{CM} = \frac{1}{2} m r^2$.
  1. Calculate the moment of inertia $I_{CM}$.
  2. Find the moment of inertia $I_{edge}$ if the axis of rotation is shifted to the edge.
Hint: $I_{shifted} = I_{CM} + m d^2$.

Solution

$I$ about the center of mass
$$ \begin{eqnarray} I_{CM} &=& \frac{1}{2} m r^2 \\ &=& \frac{1}{2} (~m~ kg) (~r~ m)^2 \\ &=& [[return sf_latex(namespace_circular_motion.i_cm)]] kgm^2 \end{eqnarray} $$
$I$ about the edge
We need to shift the axis by $d = r = ~r~ m$ to move it to the edge: $$ \begin{eqnarray} I_{edge} &=& \frac{1}{2} m r^2 + m d^2 \\ &=& \frac{1}{2} m r^2 + m r^2 \\ &=& \frac{3}{2} m r^2 \\ &=& \frac{3}{2} (~m~ kg) (~r~ m)^2 \\ &=& [[return sf_latex(namespace_circular_motion.i_edge)]] kgm^2 \end{eqnarray} $$
$I_{CM}= $
return sf_math(namespace_circular_motion.i_cm)
5%

$I_{edge}= $
return sf_math(namespace_circular_motion.i_edge)
5%
Select unit for moment of inertia:
$Nm$
$N$
$kgm$
$kgm^2$
$kgm/s$
3
rotation || moment_of_inertia || parallel_axis_theorem

Exercise - Parallel axis theorem on a rod

if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
return (true);
Rotating a rod about the center.
Rotating a rod about the edge.
[[ namespace_circular_motion.i_cm = (1/12) * ~m~ * ~l~*~l~; namespace_circular_motion.i_edge = namespace_circular_motion.i_cm + ~m~ * (~l~/2)*(~l~/2); return ""; ]] A rod of length $l = ~l~ m$ and mass $m = ~m~ kg$ has moment of inertia about its center given by $I_{CM} = \frac{1}{12} m l^2$.
  1. Calculate the moment of inertia $I_{CM}$.
  2. Find the moment of inertia $I_{edge}$ if the axis of rotation is shifted to the edge.
Hint: $I_{shifted} = I_{CM} + m d^2$.

Solution

$I$ about the center of mass
$$ \begin{eqnarray} I_{CM} &=& \frac{1}{12} m l^2 \\ &=& \frac{1}{12} (~m~ kg) (~l~ m)^2 \\ &=& [[return sf_latex(namespace_circular_motion.i_cm)]] kgm^2 \end{eqnarray} $$
$I$ about the edge
We need to shift the axis by $d = \frac{l}{2} = [[return sf_latex(~l~ / 2)]] m$ to move it to the edge: $$ \begin{eqnarray} I_{edge} &=& \frac{1}{12} m l^2 + m d^2 \\ &=& \frac{1}{12} m l^2 + m (\frac{l}{2})^2 \\ &=& \frac{1}{12} m l^2 + \frac{1}{4} m l^2 \\ &=& \frac{1}{3} m l^2 \\ &=& \frac{1}{3} (~m~ kg) (~l~ m)^2 \\ &=& [[return sf_latex(namespace_circular_motion.i_edge)]] kgm^2 \end{eqnarray} $$
$I_{CM}= $
return sf_math(namespace_circular_motion.i_cm)
5%

$I_{edge}= $
return sf_math(namespace_circular_motion.i_edge)
5%
Select unit for moment of inertia:
$Nm$
$N$
$kgm$
$kgm^2$
$kgm/s$
3
rotation || moment_of_inertia || rotational_ke

Exercise - Rotational kinetic energy basic

if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(-3, 3, 0); //defined in setup_exercise_all.js }
return 0;
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return -3; } else { return random_min_max_precision(-3, 3, 0); //defined in setup_exercise_all.js }
return 0;
if (int_count_times_randomized == 0){ return 1; } else { return random_min_max_precision(-3, 3, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(2, 9, 0); //defined in setup_exercise_all.js }
return (Math.abs(~x_1~ - ~x_2~) + Math.abs(~y_1~ - ~y_2~) > 0);
[[ namespace_circular_motion.i_shifted = ~m_1~ * (~x_1~ - ~x_shifted~) * (~x_1~ - ~x_shifted~) + ~m_2~ * (~x_2~ - ~x_shifted~) * (~x_2~ - ~x_shifted~) ; namespace_circular_motion.ke_rotational = 0.5 * namespace_circular_motion.i_shifted * ~omega~ * ~omega~; return ""; ]]
Rotating about the vertical line $x = ~x_shifted~ m$. Note that the axis does not have to be on the bar itself.
Two masses attached to a rod of negligible mass, rotating about the vertical line $x = ~x_shifted~ m$ at $~omega~ rad/s$.
  1. Find the moment of inertia $I$ about the vertical line $x = ~x_shifted~ m$.
  2. Find the rotational kinetic energy $KE_{rot}$ of the system.
Hint:
  • $I = m_1 r_1^2 + m_2 r_2^2$.
  • $KE_{rot} = \frac{1}{2} I \omega^2$

Solution

About the line $x = ~x_shifted~$
The distance of each mass to the red axis is: $$ \begin{eqnarray} r_1 &=& [[return Math.abs(~x_1~ - ~x_shifted~)]] m \\ r_2 &=& [[return Math.abs(~x_2~ - ~x_shifted~)]] m \\ \end{eqnarray} $$ Substituting: $$ \begin{eqnarray} I &=& m_1 r_1^2 + m_2 r_2^2 \\ &=& (~m_1~) ([[return Math.abs(~x_1~ - ~x_shifted~)]])^2 + (~m_2~) ([[return Math.abs(~x_2~ - ~x_shifted~)]])^2 \\ &=& [[return sf_latex(namespace_circular_motion.i_shifted)]] kgm^2 \end{eqnarray} $$
Rotational $KE$
$$ \begin{eqnarray} KE_{rot} &=& \frac{1}{2} I \omega^2 \\ &=& \frac{1}{2} ([[return sf_latex(namespace_circular_motion.i_shifted)]] kgm^2) (~omega~ rad/s)^2 \\ &=& [[return sf_latex(namespace_circular_motion.ke_rotational)]] J \end{eqnarray} $$

$I= $
return sf_math(namespace_circular_motion.i_shifted)
5%

$KE_{rot}= $
return sf_math(namespace_circular_motion.ke_rotational)
5%
Select unit for moment of inertia:
$Nm$
$N$
$kgm$
$kgm^2$
$kgm/s$
3
Select unit for rotational $KE$:
$J$
$N$
$kgm$
$kgm^2$
$N/s$
0
rotation || moment_of_inertia || rotational_ke

Exercise - Rotational kinetic energy of a disc

if (int_count_times_randomized == 0){ return 6; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(2, 5, 0); //defined in setup_exercise_all.js }
return (true);
Rotating a disc about the center.
[[ namespace_circular_motion.i_cm = 0.5 * ~m~ * ~r~*~r~; namespace_circular_motion.ke_rotational = 0.5*namespace_circular_motion.i_cm * ~omega~*~omega~; return ""; ]] A disc of radius $r = ~r~ m$ and mass $m = ~m~ kg$ has moment of inertia about its center given by $I= \frac{1}{2} m r^2$.
  1. Calculate the moment of inertia $I$.
  2. Find the rotational kinetic energy $KE_{rot}$ if it rotates at $\omega = ~omega~ rad/s$.
Hint: $KE_{rot} = \frac{1}{2} I \omega^2$.

Solution

$I$ about the center of mass
$$ \begin{eqnarray} I &=& \frac{1}{2} m r^2 \\ &=& \frac{1}{2} (~m~ kg) (~r~ m)^2 \\ &=& [[return sf_latex(namespace_circular_motion.i_cm)]] kgm^2 \end{eqnarray} $$
Rotational $KE$
$$ \begin{eqnarray} KE_{rot} &=& \frac{1}{2} I \omega^2 \\ &=& \frac{1}{2} ([[return sf_latex(namespace_circular_motion.i_cm)]] kgm^2) (~omega~ rad/s)^2 \\ &=& [[return sf_latex(namespace_circular_motion.ke_rotational)]] J \end{eqnarray} $$
$I= $
return sf_math(namespace_circular_motion.i_cm)
5%

$KE_{rot}= $
return sf_math(namespace_circular_motion.ke_rotational)
5%
Select unit for moment of inertia:
$J$
$N$
$kgm$
$kgm^2$
$kgm/s$
3
Select unit for rotational $KE$:
$J$
$N$
$kgm$
$kgm^2$
$kgm/s$
0
rotation || rotational_ke || energy

Example - Sphere rolling down a hill

Sphere rolling down a hill
A sphere of mass $m$ and radius $r$ was initially at rest at the top of a hill as shown. Find its final speed when it rolled to the bottom of the hill. You will need $I_{\text{sphere}} = \frac{2}{5} m r^2$.

Solution

We will use conservation of energy. We must take into account the fact that it was rolling, meaning both linear \(KE\) and rotational \(KE\) are present:

Position \(PE\) \(KE_{\text{linear}}\) \(KE_{\text{rotational}}\) \(E_{\text{total}}\)
Top \(mgh_1\) \( 0 \) \( 0 \) \(mgh_1\)
Bottom \(mgh_2\) \( \frac{1}{2} m v_2^2 \) \( \frac{1}{2} I \omega_2^2\) \(mgh_2 + \frac{1}{2} m v_2^2 + \frac{1}{2} I \omega_2^2\)

Before equating the energy, however, we need to simplify the final \(KE_{\text{rotational}}\) in order to express everything in terms of \(v_2\): $$ \begin{eqnarray} KE_{\text{rotational}} &=& \frac{1}{2} I \omega_2^2 \\ &=& \frac{1}{2} (\frac{2}{5} m r^2) (\frac{v_2}{r})^2\\ &=& \frac{1}{5} m v_2^2 \end{eqnarray} $$ This gives:

$$ \begin{eqnarray} mgh_1 &=& mgh_2 + \frac{1}{2} m v_2^2 + \frac{1}{5} m v_2^2 \\ \Rightarrow mgh_1 - mgh_2 &=& \frac{7}{10} m v_2^2\\ \Rightarrow g(h_1 - h_2) &=& \frac{7}{10} v_2^2\\ v_2 &=& \sqrt{\frac{10}{7}g(h_1 - h_2) } \end{eqnarray} $$ Note that \(m\) and \(r\) both canceled out.

rotation || rotational_ke || energy

Exercise - Cylinder rolling down a hill

if (int_count_times_randomized == 0){ return 10; } else { return random_min_max_precision(7, 20, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(1, 5, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 0.5; } else { return random_min_max_precision(0.1, 0.9, 1); //defined in setup_exercise_all.js }
return (true);
Cylinder rolling down a hill
[[ namespace_circular_motion.v_2 = Math.sqrt((4/3)*(9.8)*(~h_1~ - ~h_2~) ); return ""; ]] A cylinder of mass $m$ and radius $r$ was initially at rest at the top of a hill as shown. Find its final speed $v$ when it rolled to the bottom of the hill. You will need $I_{\text{cylinder}} = \frac{1}{2} m r^2$.
Hint: $mgh_1 = mgh_2 + \frac{1}{2} m v_2^2 + \frac{1}{2} I \omega_2^2$

Solution

First we work out the rotational $KE$: $$ \begin{eqnarray} KE_{\text{rotational}} &=& \frac{1}{2} I \omega_2^2 \\ &=& \frac{1}{2} (\frac{1}{2} m r^2) (\frac{v_2}{r})^2\\ &=& \frac{1}{4} m v_2^2 \end{eqnarray} $$ Using $\frac{1}{4} m v_2^2$ as the final rotational kinetic energy: $$ \begin{eqnarray} mgh_1 &=& mgh_2 + \frac{1}{2} m v_2^2 + \frac{1}{2} I \omega_2^2 \\ \Rightarrow mgh_1 &=& mgh_2 + \frac{1}{2} m v_2^2 + \frac{1}{4} m v_2^2 \\ \Rightarrow mgh_1 - mgh_2 &=& \frac{3}{4} m v_2^2\\ \Rightarrow g(h_1 - h_2) &=& \frac{3}{4} v_2^2\\ v_2 &=& \sqrt{\frac{4}{3}g(h_1 - h_2) } \\ &=& \sqrt{\frac{4}{3}(9.8)(~h_1~ - ~h_2~) } \\ &=& [[return sf_latex(namespace_circular_motion.v_2)]] m/s \end{eqnarray} $$
Angular velocity
We can then use \(\omega = \frac{v}{r}\): $$ \begin{eqnarray} \omega_2 &=& \frac{[[return sf_latex(namespace_circular_motion.v_2)]] m/s}{~r~ m} \\ &=& [[return sf_latex(namespace_circular_motion.v_2/~r~)]] rad/s \end{eqnarray} $$
$v_2= $
return sf_math(namespace_circular_motion.v_2)
5%
$m/s$
$\omega_2= $
return sf_math(namespace_circular_motion.v_2/~r~)
5%
$rad/s$
circular_motion || rotation || vector

Exercise - Circular motion in $\hat i$, $\hat j$

if (int_count_times_randomized == 0){ return 3; } else { return random_min_max_precision(2, 10, 0); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 2; } else { return random_min_max_precision(1.1, 5, 1); //defined in setup_exercise_all.js }
if (int_count_times_randomized == 0){ return 1.2; } else { return random_min_max_precision(2, 20, 1); //defined in setup_exercise_all.js }
return (true);
An object moves in the counter-clockwise direction around a circle of radius $R = ~R~ m$ at $~omega~ rad/s$, starting from the positive $x$-axis at $0s$. Express your answers below for the object at $t = ~t~ s$ in terms of $\hat i$ and $\hat j$.
  1. What is the total angle traveled during $~t~ s$ in radians?
  2. What is the total angle in degrees?
  3. Find the position vector.
  4. Find the velocity vector.
  5. Find the acceleration vector.
  6. Sketch a picture showing the directions of the three vectors above. The lengths of the vectors can be arbitray (no need to submit).
theta = ~omega~ * ~t~; theta_in_degree = theta * 180 / Math.PI; theta_in_degree_remainder = theta_in_degree % 360; s = new Class_Vector(~R~ * Math.cos(theta), ~R~ * Math.sin(theta)); v = new Class_Vector(-1 * ~omega~ * ~R~ * Math.sin(theta), ~omega~ * ~R~ * Math.cos(theta)); a = s.times_scalar(-1 * ~omega~ * ~omega~);
Hint: $$ \begin{eqnarray} \theta &=& \omega t \\ \vec s &=& R \cos \theta \hat i + R \sin \theta \hat j \end{eqnarray} $$

Solution

The directions of $\vec s$. Not to scale.
The directions of $\vec v$ and $\vec a$. Not to scale.
Angle
In radians: $$ \begin{eqnarray} \theta &=& \omega t = (~omega~ rad/s) (~t~ s) \\ &=& [[return sf_latex(theta)]] rad \end{eqnarray} $$ In degrees: $$ \begin{eqnarray} \theta &=& [[return sf_latex(theta)]] (\frac{180^\circ}{\pi}) \\ &=& [[return sf_latex(theta_in_degree)]] ^\circ \end{eqnarray} $$ Taking out multiples of $360^\circ$, we have the angle $[[return sf_latex(theta_in_degree_remainder)]] ^\circ$.
Position
$$ \begin{eqnarray} \vec s &=& R \cos \omega t \hat i + R \sin \omega t \hat j \\ &=& R \cos \theta \hat i + R \sin \theta \hat j \\ &=& [[return s.string_latex(2, false)]] \end{eqnarray} $$
Velocity
$$ \begin{eqnarray} \vec v &=& \frac{d \vec s}{dt} \\ &=& \frac{d}{dt} (R \cos \omega t \hat i + R \sin \omega t \hat j) \\ &=& -\omega R \sin \omega t \hat i + \omega R \cos \omega t \hat j \\ &=& -\omega R \sin \theta \hat i + \omega R \cos \theta \hat j \\ &=& [[return v.string_latex(2, false)]] \end{eqnarray} $$
Acceleration
$$ \begin{eqnarray} \vec a &=& \frac{d \vec v}{dt} \\ &=& \frac{d}{dt} (-\omega R \sin \omega t \hat i + \omega R \cos \omega t \hat j) \\ &=& -\omega^2 R \cos \omega t \hat i - \omega^2 R \sin \omega t \hat j \\ &=& -\omega^2 R \cos \theta \hat i - \omega^2 R \sin \theta \hat j \\ &=& -\omega^2 \vec s \\ &=& [[return a.string_latex(2, false)]] \end{eqnarray} $$
$\vec s = $
return sf_math(s.x)
5%
$\hat i +$
return sf_math(s.y)
5%
$\hat j$
$\vec v = $
return sf_math(v.x)
5%
$\hat i +$
return sf_math(v.y)
5%
$\hat j$
$\vec a = $
return sf_math(a.x)
5%
$\hat i +$
return sf_math(a.y)
5%
$\hat j$